AbstractAnchored Single-atom catalysts have emerged as a cutting-edge research field holding tremendous appeal for applications in the fields of chemicals, energy and the environment. However, single-atom-catalysts for crystal growth is a nascent field. Of the few studies available, all of them are based on state-of-the-art in situ microscopy investigations and computational studies, and they all look at the growth of monolayer graphene from a single-atom catalyst. Despite the limited number of studies, they do, collectively, represent a new sub-field of single-atom catalysis, namely single-atom catalytic growth of crystalline solids. In this review, we examine them on substrate-supported and as freestanding graphene fabrication, as well as rolled-up graphene, viz., single-walled carbon nanotubes (SWCNT), grown from a single atom. We also briefly discuss the catalytic etching of graphene and SWCNT’s and conclude by outlining the future directions we envision this nascent field to take.