Organic electrode materials for non-aqueous, aqueous, and all-solid-state Na-ion batteries

Author(s):  
Kathryn Holguin ◽  
Motahareh Mohammadiroudbari ◽  
Kaiqiang Qin ◽  
Chao Luo

Na-ion batteries (NIBs) are promising alternatives to Li-ion batteries (LIBs) due to the low cost, abundance, and high sustainability of sodium resources. However, the high performance of inorganic electrode materials...

Author(s):  
Mingtan Wang ◽  
Wenjing Lu ◽  
Huamin Zhang ◽  
Xianfeng Li

Abstract The demands for high-performance and low-cost batteries make K-ion batteries (KIBs) considered as promising supplements or alternatives for Li-ion batteries (LIBs). Nevertheless, there are only a small amount of conventional inorganic electrode materials that can be used in KIBs, due to the large radius of K+ ions. Differently, organic electrode materials (OEMs) generally own sufficiently interstitial space and good structure flexibility, which can maintain superior performance in K-ion systems. Therefore, in recent years, more and more investigations have been focused on OEMs for KIBs. This review will comprehensively cover the researches on OEMs in KIBs in order to accelerate the research and development of KIBs. The reaction mechanism, electrochemical behavior, etc., of OEMs will all be summarized in detail and deeply. Emphasis is placed to overview the performance improvement strategies of OEMs and the characteristic superiority of OEMs in KIBs compared with LIBs and Na-ion batteries.


2014 ◽  
Vol 2 (47) ◽  
pp. 20075-20082 ◽  
Author(s):  
Jeong-Uk Seo ◽  
Cheol-Min Park

ZnTe and a nanostructured ZnTe/C composite were prepared by a simple solid-state synthetic route, and their potential as electrode materials for rechargeable Li-ion batteries was investigated.


Author(s):  
Jing Wang ◽  
Xingkang Huang ◽  
Junhong Chen

Solid-state lithium batteries (SSLBs) are promising candidates for replacing traditional liquid-based Li-ion batteries and revolutionizing battery systems for electric vehicles and portable devices. However, longstanding issues such as form factors,...


2020 ◽  
Vol 7 (19) ◽  
pp. 3657-3666
Author(s):  
Zijian Zhao ◽  
Guiying Tian ◽  
Angelina Sarapulova ◽  
Lihua Zhu ◽  
Sonia Dsoke

Due to the high specific capacity and low cost, transition metal oxides (TMOs) exhibit huge potential as anode materials for high-performance Li-ion batteries.


Author(s):  
Xinhui Zhao ◽  
Qingqing Ren

Abstract Low-cost Fe-based electrode materials for Li-ion energy storage devices attract lots of attention. In this work, porous Fe2O3 nanoparticles are synthesized by a simple route. Firstly, their lithium storage performance is investigated by assembling half-cell configurations with Li foil as the counter electrode. During initial dozens of cycles, capacities of Fe2O3 nanoparticles fall off rapidly, which is related to continuous growth of solid electrolyte interphase (SEI). Amazingly, the capacities show an upturn in extended cycles. The pseudocapacitance of activated capacities is revealed by executing cyclic voltammetry (CV) tests at various scan rates on 500-cycled Fe2O3 electrodes. Based on electrochemical results, we speculate this special cycling performance of Fe2O3 nanoparticles may be associated with reversible electrochemical processes of SEI under the catalysis of nano-size Fe. Further, 500-cycled Fe2O3 anodes are reassembled with activated carbon cathodes for Li-ion capacitors (LICs). The LICs show energy densities of 110 Wh kg−1 at power densities of 136 W kg−1, and 72.8% capacity retention after 3000 cycles at 2 A g−1. We report an interesting electrochemical behavior of porous Fe2O3 nanoparticles, and a high-performance LIC based on activated Fe2O3 as an anode. This work may offer a new understanding for lithium storage capacities of metal oxide anodes.


2013 ◽  
Vol 6 (7) ◽  
pp. 2145 ◽  
Author(s):  
Magali Gauthier ◽  
Driss Mazouzi ◽  
David Reyter ◽  
Bernard Lestriez ◽  
Philippe Moreau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document