Selective cleavages of N–Cα and Cα–C bonds of β-radical tautomers of amino acid residues in radical peptides have been examined theoretically by means of the density functional theory at the M06-2X/6-311++G(d,p) level. The majority of the bond cleavages are homolytic via β-scission. Their energy barriers depend largely on the ability of the radical being stabilized in the transition structures and the availability of a mobile proton in the vicinity of the β-radical center. The N–Cα bond is less favorably cleaved than the Cα–C bond (except Ser and Thr) for systems without a mobile proton. It is because, firstly, the homolytic cleavage is less favorable for the more polar N–Cα bond than for the less polar Cα–C bond. Secondly, a less stable σ-radical localized on the amide nitrogen atom of the incipient N-terminal fragment is formed for the former, while a more stable radical delocalized in a π*(CO)-like orbital of the incipient C-terminal fragment is formed for the latter. In the presence of a mobile proton N-terminal to the β-radical center, some degrees of heterolytic cleavage character, as preferred by the polar N–Cα bond, are observed. Consequently, its barrier is reduced. If the mobile proton is located at the C-terminal amide oxygen of the β-radical center, the Cα–C bond cleavage will be significantly suppressed. It is because the radical in the incipient C-terminal fragment becomes more localized as a σ-radical on the carbon atom of its protonated amide group. With basic amino acid residues, the Cα–C bond cleavage can be reactivated. Heterolytic cleavage of the polar N–Cα bond can be largely facilitated if a mobile proton N-terminal to the β-radical center is available and the radical in the incipient C-terminal fragment is sufficiently stabilized, for instance, by the aromatic side chain of Trp and Tyr. Therefore, cleavages of the N–Cα bond induced by the β-radical tautomer of Trp and Tyr are often preferred as compared with cleavages of the Cα–C bond in peptide radical cations containing mobile protons.