Regulation of rabbit acute phase protein biosynthesis by monokines
We defined the acute phase behaviour of a number of rabbit plasma proteins in studies (in vivo) and studied the effects of monokine preparations on their synthesis by rabbit primary hepatocyte cultures. Following turpentine injection, increased serum levels of C-reactive protein, serum amyloid A protein, haptoglobin, ceruloplasmin, and decreased concentrations of albumin were observed. In contrast to what is observed in man, concentrations of alpha 2-macroglobulin and transferrin were increased. Co-culture of primary hepatocyte cultures with lipopolysaccharide-activated human peripheral blood monocytes or incubation with conditioned medium prepared from lipopolysaccharide-activated human or rabbit monocytes resulted in dose-dependent induction of serum amyloid A, haptoglobin, ceruloplasmin and transferrin and depression of albumin synthesis, while C-reactive protein synthesis and mRNA levels remained unchanged. A variety of interleukin-1 preparations induced dose-dependent increases in the synthesis and secretion of serum amyloid A, haptoglobin, ceruloplasmin and transferrin and decreased albumin synthesis. Human recombinant tumour necrosis factor (cachectin) induced a dose-dependent increase in synthesis of haptoglobin and ceruloplasmin. In general, human interleukin-1 was more potent than mouse interleukin-1 and tumour necrosis factor. None of the monokines we studied had an effect on C-reactive protein synthesis or mRNA levels. These data confirm that C-reactive protein, serum amyloid A, haptoglobin and ceruloplasmin display acute phase behaviour in the rabbit, and demonstrate that, in contrast to their behaviour in man, alpha 2M and transferrin are positive acute phase proteins in this species. While both interleukin-1 and tumour necrosis factor regulate biosynthesis of a number of these acute phase proteins in rabbit primary hepatocyte cultures, neither of these monokines induced C-reactive protein synthesis. Comparison of these findings with those in human hepatoma cell lines, in which interleukin-1 does not induce serum amyloid A synthesis, suggests that the effect of interleukin-1 on serum amyloid A synthesis may be indirect.