scholarly journals Identification of amino acid changes affecting yeast uroporphyrinogen decarboxylase activity by sequence analysis of hem12 mutant alleles

1992 ◽  
Vol 288 (3) ◽  
pp. 753-757 ◽  
Author(s):  
A Chelstowska ◽  
T Zoladek ◽  
J Garey ◽  
J Kushner ◽  
J Rytka ◽  
...  

The molecular basis of the uroporphyrinogen decarboxylase defect in eleven yeast ‘uroporphyric’ mutants was investigated. Uroporphyrinogen decarboxylase, an enzyme of the haem-biosynthetic pathway, catalyses the decarboxylation of uroporphyrinogen to coproporphyrinogen and is encoded by the HEM12 gene in the yeast Saccharomyces cerevisiae. The mutations were identified by sequencing the mutant hem12 alleles amplified in vitro from genomic DNA extracted from the mutant strains. Four mutations leading to the absence of enzyme protein were found: one mutation caused the substitution of the translation initiator Met to Ile, a two-base deletion created a frameshift at codon 247 and two nonsense mutations were found at codons 50 and 263. Four different point mutations were identified in seven ‘leaky’ mutants with residual modified uroporphyrinogen decarboxylase activity; each of three mutations was found in two independently isolated mutants. The nucleotide transitions resulted in the amino acid substitutions Ser-59 to Phe, Thr-62 to Ile, Leu-107 to Ser, or Ser-215 to Asn, all located in or near highly conserved regions. The results suggest that there is a single active centre in uroporphyrinogen decarboxylase, the geometry of which is affected in the mutant enzymes.

2014 ◽  
Vol 95 (5) ◽  
pp. 1033-1042 ◽  
Author(s):  
Blanca García-Barreno ◽  
Teresa Delgado ◽  
Sonia Benito ◽  
Inmaculada Casas ◽  
Francisco Pozo ◽  
...  

Murine hybridomas producing neutralizing mAbs specific to the pandemic influenza virus A/California/07/2009 haemagglutinin (HA) were isolated. These antibodies recognized at least two different but overlapping new epitopes that were conserved in the HA of most Spanish pandemic isolates. However, one of these isolates (A/Extremadura/RR6530/2010) lacked reactivity with the mAbs and carried two unique mutations in the HA head (S88Y and K136N) that were required simultaneously to eliminate reactivity with the murine antibodies. This unusual requirement directly illustrates the phenomenon of enhanced antigenic change proposed previously for the accumulation of simultaneous amino acid substitutions at antigenic sites of the influenza A virus HA during virus evolution (Shih et al., Proc Natl Acad Sci USA, 104 , 6283–6288, 2007). The changes found in the A/Extremadura/RR6530/2010 HA were not found in escape mutants selected in vitro with one of the mAbs, which contained instead nearby single amino acid changes in the HA head. Thus, either single or double point mutations may similarly alter epitopes of the new antigenic site identified in this work in the 2009 H1N1 pandemic virus HA. Moreover, this site is relevant for the human antibody response, as shown by competition of mAbs and human post-infection sera for virus binding. The results are discussed in the context of the HA antigenic structure and challenges posed for identification of sequence changes with possible antigenic impact during virus surveillance.


1993 ◽  
Vol 13 (8) ◽  
pp. 5010-5019 ◽  
Author(s):  
J Heitman ◽  
A Koller ◽  
J Kunz ◽  
R Henriquez ◽  
A Schmidt ◽  
...  

The immunosuppressants cyclosporin A, FK506, and rapamycin inhibit growth of unicellular eukaryotic microorganisms and also block activation of T lymphocytes from multicellular eukaryotes. In vitro, these compounds bind and inhibit two different types of peptidyl-prolyl cis-trans isomerases. Cyclosporin A binds cyclophilins, whereas FK506 and rapamycin bind FK506-binding proteins (FKBPs). Cyclophilins and FKBPs are ubiquitous, abundant, and targeted to multiple cellular compartments, and they may fold proteins in vivo. Previously, a 12-kDa cytoplasmic FKBP was shown to be only one of at least two FK506-sensitive targets in the yeast Saccharomyces cerevisiae. We find that a second FK506-sensitive target is required for amino acid import. Amino acid-auxotrophic yeast strains (trp1 his4 leu2) are FK506 sensitive, whereas prototrophic strains (TRP1 his4 leu2, trp1 HIS4 leu2, and trp1 his4 LEU2) are FK506 resistant. Amino acids added exogenously to the growth medium mitigate FK506 toxicity. FK506 induces GCN4 expression, which is normally induced by amino acid starvation. FK506 inhibits transport of tryptophan, histidine, and leucine into yeast cells. Lastly, several genes encoding proteins involved in amino acid import or biosynthesis confer FK506 resistance. These findings demonstrate that FK506 inhibits amino acid import in yeast cells, most likely by inhibiting amino acid transporters. Amino acid transporters are integral membrane proteins which import extracellular amino acids and constitute a protein family sharing 30 to 35% identity, including eight invariant prolines. Thus, the second FK506-sensitive target in yeast cells may be a proline isomerase that plays a role in folding amino acid transporters during transit through the secretory pathway.


1990 ◽  
Vol 10 (11) ◽  
pp. 5679-5687
Author(s):  
C K Barlowe ◽  
D R Appling

In eucaryotes, 10-formyltetrahydrofolate (formyl-THF) synthetase, 5,10-methenyl-THF cyclohydrolase, and NADP(+)-dependent 5,10-methylene-THF dehydrogenase activities are present on a single polypeptide termed C1-THF synthase. This trifunctional enzyme, encoded by the ADE3 gene in the yeast Saccharomyces cerevisiae, is thought to be responsible for the synthesis of the one-carbon donor 10-formyl-THF for de novo purine synthesis. Deletion of the ADE3 gene causes adenine auxotrophy, presumably as a result of the lack of cytoplasmic 10-formyl-THF. In this report, defined point mutations that affected one or more of the catalytic activities of yeast C1-THF synthase were generated in vitro and transferred to the chromosomal ADE3 locus by gene replacement. In contrast to ADE3 deletions, point mutations that inactivated all three activities of C1-THF synthase did not result in an adenine requirement. Heterologous expression of the Clostridium acidiurici gene encoding a monofunctional 10-formyl-THF synthetase in an ade3 deletion strain did not restore growth in the absence of adenine, even though the monofunctional synthetase was catalytically competent in vivo. These results indicate that adequate cytoplasmic 10-formyl-THF can be produced by an enzyme(s) other than C1-THF synthase, but efficient utilization of that 10-formyl-THF for purine synthesis requires a nonenzymatic function of C1-THF synthase. A monofunctional 5,10-methylene-THF dehydrogenase, dependent on NAD+ for catalysis, has been identified and purified from yeast cells (C. K. Barlowe and D. R. Appling, Biochemistry 29:7089-7094, 1990). We propose that the characteristics of strains expressing full-length but catalytically inactive C1-THF synthase could result from the formation of a purine-synthesizing multienzyme complex involving the structurally unchanged C1-THF synthase and that production of the necessary one-carbon units in these strains is accomplished by an NAD+ -dependent 5,10-methylene-THF dehydrogenase.


1988 ◽  
Vol 8 (10) ◽  
pp. 4370-4380
Author(s):  
M T Fasullo ◽  
R W Davis

We used the his3 recombinational substrates (his3 fragments) to direct large interchromosomal (translocations) and intrachromosomal (deletions and tandem duplications) rearrangements in the yeast Saccharomyces cerevisiae. In strains completely deleted for the wild-type HIS3 gene, his3 fragments, one containing a deletion of 5' amino acid coding sequences and the other containing a deletion of 3' amino acid coding sequences, were first placed at preselected sites by homologous recombination. His+ revertants that arose via spontaneous mitotic recombination between the two his3 fragments were selected. This strategy was used to direct rearrangements in both RAD52+ and rad52 mutant strains. Translocations occurred in the RAD52+ genetic background and were characterized by orthogonal field alternating gel electrophoresis of yeast chromosomal DNA and by standard genetic techniques. An unexpected translocation was also identified in which HIS3 sequences were amplified. Two types of tandem duplications of the GAL(7, 10, 1) locus were also directed, and one type was not observed in rad52 mutants. Recombination mechanisms are discussed to account for these differences.


2000 ◽  
Vol 44 (8) ◽  
pp. 2100-2108 ◽  
Author(s):  
Michael Korsinczky ◽  
Nanhua Chen ◽  
Barbara Kotecka ◽  
Allan Saul ◽  
Karl Rieckmann ◽  
...  

ABSTRACT Atovaquone is the major active component of the new antimalarial drug Malarone. Considerable evidence suggests that malaria parasites become resistant to atovaquone quickly if atovaquone is used as a sole agent. The mechanism by which the parasite develops resistance to atovaquone is not yet fully understood. Atovaquone has been shown to inhibit the cytochrome bc 1 (CYTbc 1) complex of the electron transport chain of malaria parasites. Here we report point mutations in Plasmodium falciparum CYT b that are associated with atovaquone resistance. Single or double amino acid mutations were detected from parasites that originated from a cloned line and survived various concentrations of atovaquone in vitro. A single amino acid mutation was detected in parasites isolated from a recrudescent patient following atovaquone treatment. These mutations are associated with a 25- to 9,354-fold range reduction in parasite susceptibility to atovaquone. Molecular modeling showed that amino acid mutations associated with atovaquone resistance are clustered around a putative atovaquone-binding site. Mutations in these positions are consistent with a reduced binding affinity of atovaquone for malaria parasite CYTb.


2013 ◽  
Vol 288 (20) ◽  
pp. 14032-14045 ◽  
Author(s):  
Alexander N. Patananan ◽  
Jonathan M. Palmer ◽  
Graeme S. Garvey ◽  
Nancy P. Keller ◽  
Steven G. Clarke

The filamentous fungi in the genus Aspergillus are opportunistic plant and animal pathogens that can adapt to their environment by producing various secondary metabolites, including lovastatin, penicillin, and aflatoxin. The synthesis of these small molecules is dependent on gene clusters that are globally regulated by the LaeA protein. Null mutants of LaeA in all pathogenic fungi examined to date show decreased virulence coupled with reduced secondary metabolism. Although the amino acid sequence of LaeA contains the motifs characteristic of seven-β-strand methyltransferases, a methyl-accepting substrate of LaeA has not been identified. In this work we did not find a methyl-accepting substrate in Aspergillus nidulans with various assays, including in vivo S-adenosyl-[methyl-3H]methionine labeling, targeted in vitro methylation experiments using putative protein substrates, or in vitro methylation assays using whole cell extracts grown under different conditions. However, in each experiment LaeA was shown to self-methylate. Amino acid hydrolysis of radioactively labeled LaeA followed by cation exchange and reverse phase chromatography identified methionine as the modified residue. Point mutations show that the major site of modification of LaeA is on methionine 207. However, in vivo complementation showed that methionine 207 is not required for the biological function of LaeA. LaeA is the first protein to exhibit automethylation at a methionine residue. These findings not only indicate LaeA may perform novel chemistry with S-adenosylmethionine but also provide new insights into the physiological function of LaeA.


1984 ◽  
Vol 218 (2) ◽  
pp. 405-413 ◽  
Author(s):  
J Rytka ◽  
T Bilinski ◽  
R Labbe-Bois

The isolation of a new mutant Sm1 strain of yeast, Saccharomyces cerevisiae, is described: this strain was partially defective in haem formation and accumulated large amounts of Zn-porphyrins. Genetic analysis showed that the porphyrin accumulation was under the control of a single nuclear recessive mutation. Biochemical analysis showed that the main porphyrins accumulated in the cells were uroporphyrin and heptacarboxyporphyrin, mostly of the isomer-III type. The excreted porphyrins comprised mainly dehydroisocoproporphyrin. Analysis of uroporphyrinogen decarboxylase activity in the cell-free extract revealed a 70-80% decrease of activity in the mutant and showed that the relative rates of the different decarboxylation steps were modified with the mutant enzyme. A 2-3-fold increase in 5-aminolaevulinate synthase activity was measured in the mutant. The biochemical characteristics of the Sm1 mutant are very similar to those described for porphyria cutanea tarda.


2001 ◽  
Vol 45 (3) ◽  
pp. 734-738 ◽  
Author(s):  
Tiffany R. Shultz ◽  
John W. Tapsall ◽  
Peter A. White

ABSTRACT The in vitro activities of ciprofloxacin, trovafloxacin, moxifloxacin, and grepafloxacin against 174 strains of Neisseria gonorrhoeae isolated in Sydney, Australia, were determined. The strains included 84 quinolone-less-sensitive and -resistant N. gonorrhoeae (QRNG) strains for which ciprofloxacin MICs were in the range of 0.12 to 16 μg/ml. The QRNG included strains isolated from patients whose infections were acquired in a number of countries, mostly in Southeast Asia. The gyrA and parCquinolone resistance-determining regions (QRDR) of 18 selected QRNG strains were sequenced, and the amino acid mutations observed were related to the MICs obtained. The activities of moxifloxacin and grepafloxacin against QRNG were comparable to that of ciprofloxacin. Trovafloxacin was more active than the other quinolones against some but not all of the QRNG strains. Increments in ciprofloxacin resistance occurred in a step-wise manner with point mutations initiated ingyrA resulting in amino acid alterations Ser91-to-Phe, Ser91-to-Tyr, Asp95-to-Gly, and Asp95-to-Asn. Single gyrAchanges correlated with ciprofloxacin MICs in the range 0.12 to 1 μg/ml. The Ser91 changes in GyrA were associated with higher MICs and further QRDR changes. QRNG strains for which ciprofloxacin MICs were greater than 1 μg/ml had both gyrA and parCQRDR point mutations. ParC alterations were seen in these isolates only in the presence of GyrA changes and comprised amino acid changes Asp86-to-Asn, Ser87-to-Asn, Ser87-to-Arg, Ser88-to-Pro, Glu91-to-Lys, and Glu91-to-Gln. QRNG strains for which MICs were in the higher ranges had double GyrA mutations, but again only with accompanying ParC alterations. Not only did the nature and combination of GyrA and ParC changes influence the incremental increases in ciprofloxacin MICs, but they seemingly also altered the differential activity of trovafloxacin. Our findings suggest that the newer quinolones of the type examined are unlikely to be useful replacements for ciprofloxacin in the treatment of gonorrhea, particularly where ciprofloxacin MICs are high or where resistance is widespread.


2001 ◽  
Vol 45 (10) ◽  
pp. 2958-2960 ◽  
Author(s):  
Pio Maria Furneri ◽  
Giancarlo Rappazzo ◽  
Maria Pia Musumarra ◽  
Patrizia Di Pietro ◽  
Lucrezia S. Catania ◽  
...  

ABSTRACT We describe two mutants of Mycoplasma hominis PG-21 which show resistance to 16-membered macrolides but susceptibility to lincosamides, obtained by in vitro exposure to increasing doses of josamycin. The 23S rRNA gene showed that each had a mutation (A2062G and A2062T) corresponding to nucleotide 2062 in Escherichia coli, which was associated with the acquired phenotype.


Sign in / Sign up

Export Citation Format

Share Document