scholarly journals Expression and site-directed mutagenesis of mouse prostaglandin E2 receptor EP3 subtype in insect cells

1995 ◽  
Vol 307 (2) ◽  
pp. 493-498 ◽  
Author(s):  
C Huang ◽  
H H Tai

A cDNA encoding for mouse prostaglandin E2 (PGE2) receptor EP3 subtype was cloned from a mouse kidney cDNA library by PCR using terminal primers derived from the known sequence of mouse lung EP3 receptor cDNA. The cloned cDNA was confirmed by sequencing and was expressed in Trichoplusia ni (MG1) insect cells using a baculovirus expression system. A specific protein of 60 kDa was detected by immunoblot with antibodies generated against a unique decapeptide sequence present in the second extracellular loop of the EP3 receptor. Specific binding of [3H]PGE2 with a Kd of 3 nM was also found in the membrane fraction of the insect cells. Ligand binding of the receptor was further studied by site-directed mutagenesis. Arg-309 of the receptor was separately mutated to lysine, glutamate and valine. cDNAs of the wild-type and mutant EP3 receptors were respectively expressed and studied in MG1 insect cells. Binding studies indicated that both glutamate and valine mutant EP3 receptors had no binding of [3H]PGE2. On the contrary, the lysine mutant receptor exhibited an even tighter binding (Kd = 1.3 nM) than the wild-type EP3 receptor. Immunoblot studies indicated that these receptors were expressed in a comparable amount in MG1 insect cells. These results suggest that Arg-309 of EP3 receptor may be essential in ligand binding through ionic interaction.

1993 ◽  
Vol 295 (2) ◽  
pp. 457-461 ◽  
Author(s):  
Z Xia ◽  
R F Shen ◽  
S J Baek ◽  
H H Tai

cDNA coding for human placental thromboxane synthase (EC 5.3.99.5) was amplified by PCR from a human placental cDNA library and sequenced. This cDNA and a shorter cDNA isolated from a human lung cDNA library with a deletion of 163 bp near the 3′ end were expressed in Spodoptera frugiperda (Sf9) insect cells using a baculovirus expression system. The cDNA from human placenta was expressed as an active enzyme (60 kDa) with a specific activity higher than those reported from other cell types, whereas the shorter cDNA was expressed in an inactive form (52 kDa). The active recombinant enzyme appeared to be unglycosylated as the molecular mass and the enzyme activity were not altered in the presence of tunicamycin. Site-directed mutagenesis was performed to convert a cysteine at position 480 in thromboxane synthase to a serine. This cysteine is found to be highly conserved in related cytochrome P-450 enzymes. The mutant enzyme was found to be inactive, although Western blot, immunoprecipitation and SDS/PAGE analysis indicated that the mutant enzyme was expressed at a level comparable with the wild-type enzyme. These results suggest that Cys-480 is essential for the enzyme catalytic activity and that the short-form cDNA may be a non-functional transcript.


1998 ◽  
Vol 336 (3) ◽  
pp. 675-680 ◽  
Author(s):  
Zhongheng TU ◽  
M. W. ANDERS

Glutamate–cysteine ligase (GLCL) catalyses the rate-limiting step in glutathione biosynthesis. To identify cysteine residues in GLCL that are involved in its activity, eight conserved cysteine residues in human GLCL catalytic subunit (hGLCLC) were replaced with glycine residues by PCR-based site-directed mutagenesis. Both recombinant hGLCLC and hGLCL holoenzyme were expressed and purified with a baculovirus expression system. The activity of purified hGLCL holoenzyme with the mutant hGLCLC-C553G was 110±12 µmol/h per mg of protein compared with 370±20 µmol/h per mg of protein for the wild-type. Holoenzymes with hGLCLC-C52G, -C248G, -C249G, -C295G, -C491G, -C501G or -C605G showed activities similar to the wild type. The Km values of hGLCL containing hGLCLC-C553G were slightly lower than those of the wild type, indicating that the replacement of cysteine-553 with Gly in hGLCLC did not significantly affect substrate binding by the enzyme. hGLCLC-C553G was more easily dissociated from hGLCLR than the wild-type hGLCLC. GLCL activity increased by 11% after hGLCLC-C553G was incubated with an equimolar amount of purified hGLCL regulatory subunit (hGLCLR) at room temperature for 30 min, but increased by 110% after wild-type hGLCLC was incubated with hGLCLR for 10 min. These results indicate that cysteine-553 in hGLCLC is involved in heterodimer formation between hGLCLC and hGLCLR.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Jiyong Su ◽  
Linlin Cui ◽  
Yunlong Si ◽  
Chenyang Song ◽  
Yuying Li ◽  
...  

Placental protein 13/galectin-13 (Gal-13) is highly expressed in placenta, where its lower expression is related to pre-eclampsia. Recently, the crystal structures of wild-type Gal-13 and its variant R53H at high resolution were solved. The crystallographic and biochemical results showed that Gal-13 and R53H could not bind lactose. Here, we used site-directed mutagenesis to re-engineer the ligand binding site of wild-type Gal-13, so that it could bind lactose. Of six newly engineered mutants, we were able to solve the crystal structures of four of them. Three variants (R53HH57R, R53HH57RD33G and R53HR55NH57RD33G had the same two mutations (R53 to H, and H57 to R) and were able to bind lactose in the crystal, indicating that these mutations were sufficient for recovering the ability of Gal-13 to bind lactose. Moreover, the structures of R53H and R53HR55N show that these variants could co-crystallize with a molecule of Tris. Surprisingly, although these variants, as well as wild-type Gal-13, could all induce hemagglutination, high concentrations of lactose could not inhibit agglutination, nor could they bind to lactose-modified Sepharose 6b beads. Overall, our results indicate that Gal-3 is not a normal galectin, which could not bind to β-galactosides. Lastly, the distribution of EGFP-tagged wild-type Gal-13 and its variants in HeLa cells showed that they are concentrated in the nucleus and could be co-localized within filamentary materials, possibly actin.


1996 ◽  
Vol 315 (3) ◽  
pp. 761-766 ◽  
Author(s):  
J Mingorance ◽  
L Alvarez ◽  
E Sánchez-Góngora ◽  
J M Mato ◽  
M A Pajares

We have examined the functional importance of the cysteine residues of rat liver S-adenosylmethionine synthetase. For this purpose the ten cysteine residues of the molecule were changed to serines by site-directed mutagenesis. Ten recombinant enzyme mutants were obtained by using a bacterial expression system. The same level of expression was obtained for the wild type and mutants, but the ratio of S-adenosylmethionine synthetase between soluble and insoluble fractions differed for some of the mutant forms. The immunoreactivity against an anti-(rat liver S-adenosylmethionine synthetase) antibody was equivalent in all the cases. Effects on S-adenosylmethionine synthetase activities were also measured. Mutants C57S, C69S, C105S and C121S showed decreased relative specific activity of 68, 85, 63 and 29%, respectively, compared with wild-type, whereas C312S resulted in an increase of 1.6-fold. Separation of tetramer and dimer forms for wild type and mutants was carried out by using phenyl-Sepharose columns. The dimer/tetramer ratio was calculated based on the activity and on the protein level estimated by immunoblotting. No monomeric forms of the enzyme were detected in any case. Comparison of dimer/tetramer ratios indicates the importance of cysteine-69 (dimer/tetramer protein ratio of 88 versus 10.2 in the wild type) in maintaining the oligomeric state of rat liver S-adenosylmethionine synthetase. Moreover, all the mutations carried out of cysteine residues between cysteine-35 and cysteine-105 altered the ratio between oligomeric forms.


2006 ◽  
Vol 805 (1) ◽  
pp. 585-589 ◽  
Author(s):  
PASCALE GAUDIN ◽  
ALAIN COUVINEAU ◽  
JEAN-JOSÉ MAORET ◽  
CHRISTIANE ROUYER-FESSARD ◽  
MARC LABURTHE

1990 ◽  
Vol 265 (20) ◽  
pp. 11788-11795
Author(s):  
K D Egeberg ◽  
B A Springer ◽  
S G Sligar ◽  
T E Carver ◽  
R J Rohlfs ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (93) ◽  
pp. 76040-76047 ◽  
Author(s):  
Zhenya Chen ◽  
Ye Li ◽  
Yue Feng ◽  
Liang Chen ◽  
Qipeng Yuan

Arg660 was found as a new active site and Asn795Ala and Trp818Ala mutants showed higher activities than the wild type based on molecular docking simulation analysis for the first time.


Sign in / Sign up

Export Citation Format

Share Document