ep3 receptor
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 27)

H-INDEX

31
(FIVE YEARS 2)

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Al-Shaimaa A. Al-Kandery ◽  
Muddanna S. Rao ◽  
Ahmed Z. El-Hashim

Abstract Background Cough hypersensitivity is a major characteristic feature associated with several types of cough, including chronic cough, but its underlying mechanisms remain to be fully understood. Inflammatory mediators, such as prostaglandin E2 (PGE2), have been implicated in both peripheral induction and sensitization of the cough reflex. In this study, using a conscious guinea pig model of cough, we investigated whether PGE2 can sensitize the cough reflex via central actions and, if so, via which mechanisms. Methods All drugs were administered by intracerebroventricular (i.c.v.) route and whole-body plethysmograph set-up was used for both induction, using aerosolized citric acid (0.2 M), and recording of cough. Immunohistochemistry was performed to confirm the expression of NaV 1.8 channels in the nucleus tractus solitarius (nTS). Results We show that both PGE2 and the non-selective EP1/EP3 agonist, sulprostone, dose-dependently enhanced the citric acid-induced cough (P ≤ 0.001, P ≤ 0.01, respectively). Pretreatment with the EP1 antagonist, ONO-8130, did not affect the sulprostone-induced cough sensitization, whilst the EP3 antagonist, L-798,106, dose-dependently inhibited this effect (P ≤ 0.05). Furthermore, treatment with either the EP2 agonist, butaprost or the EP4 agonist, L-902,688, had no effect on cough sensitization. Additionally, pretreatment with either the TRPV1 antagonist, JNJ-17203212 or the TRPA1 antagonist, HC-030031, alone or in combination, nor with the NaV 1.1, 1.2, 1.3, 1.4, 1.6 and 1.7 channel blocker, tetrodotoxin, had any effect on the cough. In contrast, pretreatment with the NaV 1.8 antagonist, A-803467, dose-dependently inhibited this effect (P ≤ 0.05). Furthermore, NaV 1.8 channels were shown to be expressed in the nTS. Conclusion Collectively, our findings show that PGE2 sensitizes the cough reflex centrally via EP3 receptor-dependent activation of NaV 1.8 but independently of TRPV1,TRPA1 and TTX-sensitive sodium channel activation. These results indicate that PGE2 plays an important role in central sensitization of the cough reflex and suggest that central EP3 receptors and/or NaVv 1.8 channels may represent novel antitussive molecular targets. Graphical Abstract


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
L Shen ◽  
Y Shen ◽  
X Wang ◽  
B He

Abstract Aims Pathological cardiac hypertrophy induced by activation of the renin–angiotensin–aldosterone system (RAAS) is one of the leading causes of heart failure. However, in current clinical practice, the strategy for targeting the RAAS is not sufficient to reverse hypertrophy. Here, we investigated the effect of prostaglandin E1 (PGE1) on angiotensin II (AngII)-induced cardiac hypertrophy and potential molecular mechanisms underlying the effect. Methods and results Adult male C57 mice were continuously infused with AngII or saline and treated daily with PGE1 or vehicle for two weeks. Neonatal rat cardiomyocytes were cultured to detect AngII-induced hypertrophic responses. We found that PGE1 ameliorated AngII-induced cardiac hypertrophy both in vivo and in vitro. The RNA sequencing (RNA-seq) and expression pattern analysis results suggest that Netrin-1 (Ntn1) is the specific target gene of PGE1. The protective effect of PGE1 was eliminated after knockdown of Ntn1. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the PGE1-mediated signaling pathway changes are associated with the mitogen-activated protein kinase (MAPK) pathway. PGE1 suppressed AngII-induced activation of the MAPK signaling pathway, and such an effect was attenuated by Ntn1 knockdown. Blockade of MAPK signaling rescued the phenotype of cardiomyocytes caused by Ntn1 knockdown, indicating that MAPK signaling may act as the downstream effector of Ntn1. Furthermore, inhibition of the E prostanoid (EP)3 receptor, as opposed to the EP1, EP2, or EP4 receptor, in cardiomyocytes reversed the effect of PGE1, and activation of EP3 by sulprostone, a specific agonist, mimicked the effect of PGE1. Conclusion In conclusion, PGE1 ameliorates AngII-induced cardiac hypertrophy through activation of the EP3 receptor and upregulation of Ntn1, which inhibits the downstream MAPK signaling pathway. Thus, targeting EP3, as well as the Ntn1–MAPK axis, may represent a novel approach for treating pathological cardiac hypertrophy. FUNDunding Acknowledgement Type of funding sources: None.


Author(s):  
Constanze A. Jakwerth ◽  
Adam M. Chaker ◽  
Ferdinand Guerth ◽  
Madlen Oelsner ◽  
Lisa Pechtold ◽  
...  

2021 ◽  
Author(s):  
Al-Shaimaa Al-Kandery ◽  
Muddana Rao ◽  
Ahmed EL-Hashim

Abstract Background Cough hypersensitivity is a major characteristic feature associated with several types of cough, including chronic cough, but its underlying mechanisms remain to be fully understood. Inflammatory mediators, such as prostaglandin E2 (PGE2), have been implicated in peripheral induction/sensitization of the cough reflex. In this study, using a conscious guinea pig model of cough, we investigated whether PGE2 can sensitize the cough reflex via central actions and, if so, via which mechanisms. Methods All drugs were administered by intracerebroventricular (i.c.v.) route and whole-body plethysmograph set-up was used for both induction, using aerosolized citric acid (0.2 M), and recording of cough. Immunohistochemistry was performed to confirm the expression of NaV 1.8 channels in the nucleus tractus solitarius (nTS). Results We show that both PGE2 and the non-selective EP1/EP3 agonist, sulprostone, dose-dependently enhanced the citric acid-induced cough (P ≤ 0.001, P ≤ 0.01, respectively). Pretreatment with the EP1 antagonist, ONO-8130, did not affect the sulprostone-induced cough sensitization, whilst the EP3 antagonist, L-798,106, dose-dependently inhibited this effect (P ≤ 0.05). Furthermore, treatment with either the EP2 agonist, butaprost or the EP4 agonist, L-902,688, had no effect on cough sensitization. Additionally, pretreatment with either the TRPV1 antagonist, JNJ-17203212 or the TRPA1 antagonist, HC-030031, alone or in combination, nor with the NaV 1.1, 1.2, 1.3, 1.4, 1.6 and 1.7 channel blocker, tetrodotoxin, had any effect on the cough. In contrast, pretreatment with the NaV 1.8 antagonist, A-803467, dose-dependently inhibited this effect (P ≤ 0.05). Furthermore, NaV 1.8 channels were shown to be expressed in the nTS. Conclusion Collectively, our findings show that PGE2 sensitizes the cough reflex centrally via EP3 receptor-dependent activation of NaV 1.8 but independently of TRPV1/TRPA1 and TTX-sensitive sodium channel activation. These results indicate that PGE2 plays an important role in central sensitization of the cough reflex and suggest that central EP3 receptors and/or Nav 1.8 channels may represent novel antitussive molecular targets.


Author(s):  
Jaclyn Wisinski ◽  
Austin Reuter ◽  
Darby C Peter ◽  
Michael D Schaid ◽  
Rachel J Fenske ◽  
...  

When homozygous for the LeptinOb mutation (Ob), Black-and-Tan Brachyury (BTBR) mice become morbidly obese and severely insulin resistant, and by 10 weeks of age, frankly diabetic. Previous work has shown Prostaglandin EP3 Receptor (EP3) expression and activity is up-regulated in islets from BTBR-Ob mice as compared to lean controls, actively contributing to their beta-cell dysfunction. In this work, we aimed to test the impact of beta-cell-specific EP3 loss on the BTBR-Ob phenotype by crossing Ptger3 floxed mice with the Rat insulin promoter (RIP)-CreHerr driver strain. Instead, germline recombination of the floxed allele in the founder mouse - an event whose prevalence we identified as directly associated with underlying insulin resistance of the background strain - generated a full-body knockout. Full-body EP3 loss provided no diabetes protection to BTBR-Ob mice, but, unexpectedly, significantly worsened BTBR-lean insulin resistance and glucose tolerance. This in vivo phenotype was not associated with changes in beta-cell fractional area or markers of beta-cell replication ex vivo. Instead, EP3-null BTBR-lean islets had essentially uncontrolled insulin hypersecretion. The selective up-regulation of constitutively-active EP3 splice variants in islets from young, lean BTBR mice as compared to C57BL/6J, where no phenotype of EP3 loss has been observed, provides a potential explanation for the hypersecretion phenotype. In support of this, high islet EP3 expression in Balb/c females vs. Balb/c males was fully consistent with their sexually-dimorphic metabolic phenotype after loss of EP3-coupled Gαz protein. Taken together, our findings provide a new dimension to the understanding of EP3 as a critical brake on insulin secretion.


Author(s):  
Xuqing Zhang ◽  
Bin Zhu ◽  
Lili Guo ◽  
Ivona Bakaj ◽  
Matthew Rankin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document