Corn Genotypic Variation Effects on Seedling Emergence and Leaf Appearance for Short-Season Areas

2001 ◽  
Vol 186 (4) ◽  
pp. 267-271 ◽  
Author(s):  
S. H. Begna ◽  
D. L. Smith ◽  
R. I. Hamilton ◽  
L. M. Dwyer ◽  
D. W. Stewart
1998 ◽  
Vol 130 (3) ◽  
pp. 297-306 ◽  
Author(s):  
R. E. L. NAYLOR ◽  
J. SU

The progress of leaf emergence, external morphology and apical development stages were recorded in sowings of triticale (cv. Lasko) made from February to November 1990 at Aberdeen (57° N). Leaf appearance and the number of primordia were related to thermal time (above a base of 0°C) except when photoperiods were <c. 11 h. The thermal time per phyllochron varied between leaves and the combined times for all the phyllochrons at a particular sowing accounted for the apparent response of average phyllochron to sowing date. The thermal time requirements for progression to the double ridge stage, terminal spikelet stage, onset of stem elongation and anthesis were similar except where photoperiods of <11 h occurred. The rate of grain primordium production was constant when photoperiod had been increasing at seedling emergence but the rate was reduced when the seedling experienced shortening photoperiods at emergence.


1996 ◽  
Vol 32 (1) ◽  
pp. 1-12 ◽  
Author(s):  
P. Q. Craufurd ◽  
R. H. Ellis ◽  
R. R. J. Summerfield ◽  
L. Menin

SUMMARYThe base (Tb), optimum (To) and ceiling (Tce) temperature for 50% seed germination and seedling emergence, and the thermal time at sub-optimal temperatures (θ1), were examined in experiments with a range of cowpea genotypes from different habitats and latitudes. There was substantial genotypic variation in seed germination for Tb and To, but not for Tce. There was no evidence that genotypes from semi-arid habitats had higher values of To or Tce, but estimates of Tb for seed germination were related to latitude and were highest in genotypes originating from close to the equator. The significance of these responses as a component of developmental plasticity in relation to the adaptation of cowpeas is discussed.


1970 ◽  
Vol 8 (2) ◽  
pp. 108-116
Author(s):  
Shahrina Akhtar ◽  
Jalal Uddin Ahmed ◽  
Abdul Hamid ◽  
Md Rafiqul Islam

A study was conducted to evaluate 100 chickpea genotypes to explore their genetic diversity in respect of emergence and growth attributes. A high genotypic variation was observed in the characters studied. The highest positive correlation corresponded to the root mass and total plant biomass of the seedlings. Seedling biomass production was highly subjective to seedling vigor. Using discriminant function analysis, the first two functions contributed 46.2 and 39.0%, and altogether 85.2% of the variability among the genotypes. Function 1 was positively related to dry weight of root and total plants. The character with the greatest weight on function 2 was seedling emergence rate. The total dry weight of seedlings played the most dominant role in explaining the maximum variance in the genotypes. The genotypes were grouped into six clusters. Each cluster had specific seedling characteristics and the clusters 5 and 6 were closely related and clearly separated from clusters 1 and 4 for their higher amount of root and total biomass production, and vigorous seedlings, where as, the genotypes in cluster 2 and 3 were intermediate. The genotypes in cluster 5 followed by cluster 6 appeared to be important resources for selecting and developing chickpea variety. Keywords: Chickpea; genotypes; seedling; quality DOI: 10.3329/agric.v8i2.7584 The Agriculturists 8(2): 108-116 (2010)


2019 ◽  
Vol 99 (2) ◽  
pp. 128-137 ◽  
Author(s):  
K.F. Chang ◽  
S.F. Hwang ◽  
R.L. Conner ◽  
H.U. Ahmed ◽  
Q. Zhou ◽  
...  

Soybean (Glycine max) acreage on the Canadian Prairies has increased rapidly in recent years. Production has expanded into semiarid regions where irrigation and drainage problems often result in the accumulation of salts in the soil. Fusarium avenaceum and Rhizoctonia solani are the two dominant pathogens in the disease complex that cause root rot and seedling blight of legume crops on the Canadian Prairies. The effects of F. avenaceum or R. solani in combination with soil salinity on soybean root rot were evaluated under greenhouse and mini-plot conditions. As expected, inoculation with F. avenaceum or R. solani consistently reduced seedling emergence and increased root rot severity in soybean. At high soil electrical conductivity values and inoculum densities, seedling emergence decreased and root rot severity increased in soybean in both trials with F. avenaceum and R. solani. Twenty short-season soybean cultivars that were well suited for production in Alberta were evaluated for their reactions to inoculation with F. avenaceum or R. solani in a saline soil (21.1 dS m−1). High seedling emergence was observed for cultivars 900Y61, P002T04R, 900Y01, TH27005RR, P001T34R, and 900Y81 in the non-inoculated control, for P002T04R and 900Y61 in the F. avenaceum treatment, and for 900Y61, 900Y81, and 900Y71 in the R. solani treatment. Root rot severity was low for cultivars NSC Portage and 900Y61 in the non-inoculated control and P002T004R in the F. avenaceum treatment. The cultivar 900Y61 also consistently had lower disease severity over the trials in the mini-plot test.


2013 ◽  
Vol 29 (1) ◽  
pp. 92-99 ◽  
Author(s):  
Frank Forcella

AbstractStale seedbeds are used by organic growers to reduce weed populations prior to crop planting. Rye mulches, derived from mechanically killed (rolled and crimped) winter rye cover crops, can serve the same purpose for spring-planted organic crops. Both methods can also be employed by conventional growers who face looming problems with herbicide resistant weeds. The objective of this research was to compare these methods over 2 years in central Minnesota in terms of weed seedling emergence, populations, biomass and manual-weeding times, as well as stands and yields of short-season and full-season soybean varieties planted late, in mid June. Rye mulch greatly lowered both pre- and post-planting weed populations of common annual weeds, which substantially affected necessity for augmented weed control. For instance, the need for within-crop manual-weeding was low for soybean planted into rye mulch (0–6 h ha−1), but ranged from 15 to 66 h ha−1of labor for soybean planted in stale seedbeds and augmented by inter-row cultivation. However, rye mulch lowered soybean yield potential by 800–1000 kg ha−1compared with stale seedbeds in 1 of 2 years. With organic feed-grade soybean seed valued at $1 kg−1, conventional soybean seed at $0.5 kg−1, and labor for manual-weeding at $10 h−1, the use of rye mulch compared with stale seedbeds augmented by manual-weeding are equally rational choices for organic growers in central Minnesota (assuming labor is available for hand-weeding), but rye mulches probably would be a wise financial option for conventional growers compared with hand-weeding. Lastly, full-season soybean had higher yields than short-season soybean and probably represents a prudent selection in central Minnesota, regardless of the late planting date requirements for both the rye mulch and stale seedbed systems.


1995 ◽  
Vol 124 (3) ◽  
pp. 379-388 ◽  
Author(s):  
G. C. Kernich ◽  
G. A. Slafer ◽  
G. M. Halloran

SUMMARYThe rate of leaf appearance of barley varies substantially with time of sowing. This variation has been related to both the length and the rate of change of photoperiod at the time of plant emergence. An outdoor pot experiment was conducted to test if rate of change of photoperiod directly affects phasic development and rate of leaf emergence of spring barley. Two photoperiod-sensitive cultivars (Bandulla and Galleon) were subjected to five photoperiod regimes: two constant photoperiods, of 14 and 15·5 h, and three different rates of change of photoperiod of c. 2, 9 and 13 min/day from seedling emergence to awn initiation.Photoperiod treatments significantly affected the duration from seedling emergence to awn initiation in both cultivars. Rate of change of photoperiod did not affect the rate of development towards awn initiation independently of the absolute daylength it produced. Although Bandulla had a longer duration than Galleon at any photoperiod regime, the cultivars did not vary in their sensitivity to photoperiod. When this phase was divided into the leaf initiation (LI) and spikelet initiation (SI) phases, it was evident that the sensitivity to photoperiod was not constant, being in general higher during the SI than during the LI phase. However, the magnitude of the change in sensitivity was cultivar-dependent, indicating that sensitivity to photoperiod during the different phases could be under independent genetic control.Final numbers of primordia (leaves together with maximum spikelet number) were negatively affected by increasing photoperiods, but once again, there was no evidence of any effect of the rate of change of photoperiod which was independent of the average photoperiod. Both cultivars showed similar sensitivities for final leaf number but maximum spikelet number was more sensitive to photoperiod in Galleon than in Bandulla.Highly significant linear relationships between leaf number and thermal time were found for all combinations of cultivars and photoperiod regimes (r2 > 0·98). The rate of leaf appearance (RLA) was similar for both cultivars (c. 0·0185 leaves/°Cd) and did not alter during plant development or in response to the change in photoperiod at awn initiation. The range in RLA was greater for Galleon (0·0170–0·0205 leaves/°Cd) than for Bandulla (0·0173–0·0186 leaves/°Cd). Neither of these cultivars exhibited a significant relationship between rate of leaf emergence and photoperiod or rate of change of photoperiod. The lack of significant relationships between RLA and length or rate of change of photoperiod is in contrast with previous reports using time of sowing as a main treatment.


2021 ◽  
Vol 7 ◽  
pp. 1-11
Author(s):  
Ivan Ricardo Carvalho ◽  
Francisco Goi Eickhoff ◽  
Tiago Silveira da Silva ◽  
Adriano Dietterle Schulz ◽  
Rafael Soares Ourique ◽  
...  

The objective of this work was to show which traits are influenced by the interaction genotype x irrigated environment, to reveal trends of linear associations in each environment and to identify genotypic variation through canonical variable analysis in maize. The experiment was conducted in Campos Borges – RS. The experimental design used was randomized blocks organized in a factorial scheme, being two cultivation environment (dry environment characterized only by the availability of rainwater; irrigated environment where a 15 mm layer of water was applied ten days apart the crop cycle, from seedling emergence to physiological maturity stage) x 13 hybrids of maize, arranged in three replicates. The traits plant height, insertion of ear height, mass of one thousand grains and grains yield are influenced by the genotypes x environments interaction. The irrigated environment presents superiority in relation to dry environment for all the traits studied. In general, the genotype G9 performs better than others. The irrigated environment presents superiority than dry environment, in relation to the traits plant height, insertion of ear height, mass of one thousand grains, grain yield per hectare, ear length, ear diameter, ear mass, grains mass per ear and number of grains per ear row.


2010 ◽  
Vol 61 (11) ◽  
pp. 863 ◽  
Author(s):  
Susana R. Valle ◽  
Daniel F. Calderini

Soil constraints affect potential grain yield of wheat. Among these constraints acidic soils are especially important due to their combined effect on aluminum (Al) toxicity and phosphorus (P) fixation. The objective of the present study was to evaluate the response of final leaf number (FLN), phyllochron and tillering dynamic of wheat in response to different Al and P concentrations in the soil under field conditions. Two field experiments were conducted in an Andisol in Valdivia (39°47′S, 73°14′W), Chile, during the 2006–07 (Expt 1) and 2007–08 (Expt 2) growing seasons. Treatments in Expt 1 consisted of a factorial arrangement of: (i) two spring wheat cultivars with different sensitivities to Al toxicity (the sensitive cultivar: Domo.INIA and the tolerant cultivar: Dalcahue.INIA) and (ii) five exchangeable soil Al levels (from 0 to 2.7 cmolc kg–1). In Expt 2 treatments consisted of a control, two levels of Al toxicity and two P treatments with three replicates in both experiments. Leaf appearance was measured from seedling emergence to anthesis; their dynamics were recorded according to the scale developed by Haun. FLN and tiller appearance were recorded in the same plants at the same time. Exchangeable Al affected FLN in Expt 1 showing a linear association in both cultivars (r = 0.99). In Expt 2 FLN was unaffected by both Al and P levels because there was a lower soil Al concentration in this experiment. Leaf appearance rate (LAR) was adjusted to bilinear equations, differentiating among early and later leaves. In Expt 1 soil Al concentration affected phyllochron of early leaves, increasing this trait by 14 and 33 degree-days in the Al-sensitive and Al-tolerant cultivars, respectively. Similarly, phyllocron of later leaves was also increased but at a higher extent in the same cultivars (62 and 38 degree-days). Both Al toxicity and P shortage decreased the maximum (MNT) and final number of tillers (FNT). Leaf area index at anthesis was positively associated with FLN (r = 0.77) and MNT (r = 0.95 and 0.99 in the Al-sensitive and Al-tolerant cultivars, respectively), with no regard to Al or P constraints.


Sign in / Sign up

Export Citation Format

Share Document