scholarly journals The brain neurosecretory cells of the moth Samia cynthia ricini: Immunohistochemical localization and developmental changes of the Samia homologues of the Bombyx prothoracicotropic hormone and bombyxin

1995 ◽  
Vol 37 (5) ◽  
pp. 505-516 ◽  
Author(s):  
Yoshimasa Yagi ◽  
Jun Ishibashi ◽  
Koji Nagata ◽  
Hiroshi Kataoka ◽  
Akinori Suzuki ◽  
...  
Author(s):  
M. Sato ◽  
Y. Ogawa ◽  
M. Sasaki ◽  
T. Matsuo

A virgin female of the noctuid moth, a kind of noctuidae that eats cucumis, etc. performs calling at a fixed time of each day, depending on the length of a day. The photoreceptors that induce this calling are located around the neurosecretory cells (NSC) in the central portion of the protocerebrum. Besides, it is considered that the female’s biological clock is located also in the cerebral lobe. In order to elucidate the calling and the function of the biological clock, it is necessary to clarify the basic structure of the brain. The observation results of 12 or 30 day-old noctuid moths showed that their brains are basically composed of an outer and an inner portion-neural lamella (about 2.5 μm) of collagen fibril and perineurium cells. Furthermore, nerve cells surround the cerebral lobes, in which NSCs, mushroom bodies, and central nerve cells, etc. are observed. The NSCs are large-sized (20 to 30 μm dia.) cells, which are located in the pons intercerebralis of the head section and at the rear of the mushroom body (two each on the right and left). Furthermore, the cells were classified into two types: one having many free ribosoms 15 to 20 nm in dia. and the other having granules 150 to 350 nm in dia. (Fig. 1).


2017 ◽  
Vol 23 (1) ◽  
Author(s):  
C.A. JAWALE

Ovarian maturation by neurosecretory cells in the brain of freshwater crab, Barytelphusa cunicularis have been examined. The histological scrutiny of the brain of Barytelphusa cunicularis related with three types (A, B and C) of neurosecretory cells, which are classified on the basis of size, shape and tinctorial characters. All these types of cells marked annual cyclic changes of cytoplasmic material in association with ovarian cycle. The activity of these cells has been correlated with the ovarian cycle. They are distinguishable by their size, nature locations, shape, nucleus position, cell measure and the secretory product in the cytoplasm. The result indicates that the neurosecretory A, B and C cells of the brain seen involved in the process of mating ovulation. The neurosecretory materials staining intensity index of these cells is described.


Nature ◽  
1957 ◽  
Vol 179 (4553) ◽  
pp. 257-258 ◽  
Author(s):  
ALASTAIR FRASER

2007 ◽  
Vol 427 (1) ◽  
pp. 16-21 ◽  
Author(s):  
Noriko Amiya ◽  
Masafumi Amano ◽  
Yoshitaka Oka ◽  
Masayuki Iigo ◽  
Akiyoshi Takahashi ◽  
...  

Author(s):  
Edward P. Masler ◽  
Thomas J. Kelly ◽  
Belgaum S. Thyagaraja ◽  
Robert A. Bell ◽  
Dale B. Gelman ◽  
...  

2019 ◽  
Author(s):  
Dick R Nässel ◽  
Dennis Pauls ◽  
Wolf Huetteroth

Neuropeptides constitute a large and diverse class of signaling molecules that are produced by many types of neurons, neurosecretory cells, endocrines and other cells. Many neuropeptides display pleiotropic actions either as neuromodulators, co-transmitters or circulating hormones, while some play these roles concurrently. Here, we highlight pleiotropic functions of neuropeptides and different levels of neuropeptide signaling in the brain, from context-dependent orchestrating signaling by higher order neurons, to local executive modulation in specific circuits. Additionally, orchestrating neurons receive peptidergic signals from neurons conveying organismal internal state cues and relay these to executive circuits. We exemplify these levels of signaling with four neuropeptides, SIFamide, short neuropeptide F, allatostatin-A and leucokinin, each with a specific expression pattern and level of complexity in signaling.


2006 ◽  
Vol 361 (1473) ◽  
pp. 1565-1574 ◽  
Author(s):  
Marie T Filbin

In the past decade there has been an explosion in our understanding, at the molecular level, of why axons in the adult, mammalian central nervous system (CNS) do not spontaneously regenerate while their younger counterparts do. Now a number of inhibitors of axonal regeneration have been described, some of the receptors they interact with to transduce the inhibitory signal are known, as are some of the steps in the signal transduction pathway that is responsible for inhibition. In addition, developmental changes in the environment and in the neurons themselves are also now better understood. This knowledge in turn reveals novel, putative sites for drug development and therapeutic intervention after injury to the brain and spinal cord. The challenge now is to determine which of these putative treatments are the most effective and if they would be better applied in combination rather than alone. In this review I will summarize what we have learnt about these molecules and how they signal. Importantly, I will also describe approches that have been shown to block inhibitors and encourage regeneration in vivo . I will also speculate on what the differences are between the neonatal and adult CNS that allow the former to regenerate and the latter not to.


1959 ◽  
Vol s3-100 (51) ◽  
pp. 377-394
Author(s):  
ALASTAIR FRASER

Six groups of neurosecretory cells were identified in the brain of the mature larva of Lucilia caesar. Five of these groups belonged to the category of medial neurosecretory cells and one to that of lateral neurosecretory cells. The groups differ in position, cell size, staining characteristics, and sequence of activity. It is apparent that only some of the groups are concerned with the process of thoracic gland activation, though all function during metamorphosis. At least one group, not concerned in thoracic gland activation in the non-diapause larva, is continually active during diapause.


Sign in / Sign up

Export Citation Format

Share Document