Generation of wide-band data from MM-PO hybrid method by [Z] matrix interpolation

Author(s):  
A. Noga ◽  
A. Karwowski
2012 ◽  
Vol 629 ◽  
pp. 646-648
Author(s):  
Ji Ma ◽  
Shu Xi Gong ◽  
Qian Wang

An improved wide-band analysis which combines the hybrid method of moments-physical optics (MoM-PO) formula with impedance matrix interpolation technique for antennas around large platforms is presented. The algorithm proposed in this paper interpolated the mutual impedance matrix between MoM and PO regions rather than the MoM self-matrix. This practice can result in more accurate frequency response than the conventional approach. Sample numerical results demonstrate the capability of the algorithm.


1966 ◽  
Vol 24 ◽  
pp. 262-266 ◽  
Author(s):  
M. Golay
Keyword(s):  

During the last 5 years, we have developed a seven-colour photometry at the Geneva Observatory. Our multicolour photo-electric system is of a wide-band type; the bandwidth being about 500Å for four filters. The three others are similar to theUBVsystem. In Table 1 we give the filter combinations used in our photometry (1).


Author(s):  
Joanna L. Batstone

Interest in II-VI semiconductors centres around optoelectronic device applications. The wide band gap II-VI semiconductors such as ZnS, ZnSe and ZnTe have been used in lasers and electroluminescent displays yielding room temperature blue luminescence. The narrow gap II-VI semiconductors such as CdTe and HgxCd1-x Te are currently used for infrared detectors, where the band gap can be varied continuously by changing the alloy composition x.Two major sources of precipitation can be identified in II-VI materials; (i) dopant introduction leading to local variations in concentration and subsequent precipitation and (ii) Te precipitation in ZnTe, CdTe and HgCdTe due to native point defects which arise from problems associated with stoichiometry control during crystal growth. Precipitation is observed in both bulk crystal growth and epitaxial growth and is frequently associated with segregation and precipitation at dislocations and grain boundaries. Precipitation has been observed using transmission electron microscopy (TEM) which is sensitive to local strain fields around inclusions.


Sign in / Sign up

Export Citation Format

Share Document