Improved MoM-PO-Based Technique for Wideband Analysis of Antennas around Large Platforms

2012 ◽  
Vol 629 ◽  
pp. 646-648
Author(s):  
Ji Ma ◽  
Shu Xi Gong ◽  
Qian Wang

An improved wide-band analysis which combines the hybrid method of moments-physical optics (MoM-PO) formula with impedance matrix interpolation technique for antennas around large platforms is presented. The algorithm proposed in this paper interpolated the mutual impedance matrix between MoM and PO regions rather than the MoM self-matrix. This practice can result in more accurate frequency response than the conventional approach. Sample numerical results demonstrate the capability of the algorithm.

2019 ◽  
Vol 8 (1) ◽  
pp. 51-58
Author(s):  
M. Bayjja ◽  
M. Moubadir ◽  
G. Alsharahi ◽  
M. Aghoutane ◽  
N. Amar Touhami

In this paper, we apply a several wavelets basis functions to the method of moments to modeling the parallel-coupled microstrip lines. The first set of equations is for the shielded microstrip line solved with moment’s method and wavelets. The Green’s function is obtained from the theory of images. The second set are for the parallel-coupled microstrip lines operating in the TEM mode or when the analysis can be based on quasi-static approximation, the properties of coupled lines can be determined from the self- and mutual inductances and capacitances for the lines. To demonstrate the effectiveness and accuracy of the proposed technique, numerical results of even- and odd-mode characteristic impedances, coupling coefficient, percentage sparsity achieved in the impedance matrix, the CPU Time to reverse impedance matrix, and error relative for Daubechies, Coiflets,   Biorthogonal and Symlets wavelets are presented. Numerical results are in good agreement with those in previous publications.


Sign in / Sign up

Export Citation Format

Share Document