Effect of temperature and polarity reversal time on transient electric field distribution of XLPE cable joint

Author(s):  
Y. Hao ◽  
J. Li ◽  
X. Chen ◽  
J. Deng
Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2271 ◽  
Author(s):  
Qingguo Chen ◽  
Jinfeng Zhang ◽  
Minghe Chi ◽  
Peng Tan ◽  
Wenxin Sun

The electric field distortion caused by space charge is an important factor affecting the operation reliability of oil–paper insulation in a converter transformer. To study the accumulation and decay characteristics of the space charge within oil-impregnated pressboard under DC and polarity reversal voltage, and consider the possible operating conditions of the converter transformer, the space charge behavior of oil-impregnated pressboard was measured by the pulsed electro-acoustic (PEA) method in the temperature range from −20 °C to 60 °C. The effect of temperature on the accumulation and decay characteristics of space charge is also analyzed. The space charge accumulated within the pressboard at low temperature is mainly homocharge injected by the electrode, while heterocharge formed by ion dissociation counteracts some of the homocharge at high temperature. Thus, the space charge of pressboard first increases, then decreases, with an increase in temperature. However, slow decay of the space charge causes severe distortion of the electric field distribution in the pressboard during voltage polarity reversal.


2012 ◽  
Vol 229-231 ◽  
pp. 807-810
Author(s):  
Li Zhang ◽  
Qing Min Li ◽  
Li Na Zhang ◽  
Yu Di Cong

±1000kV DC wall bushing under planning is a complex insulation system which bears the effects imposed by different working conditions. The electric field distribution is concentrated at the bushing outlet terminal, which might result in breakdown discharge especially when short-time abrupt conditions such as polarity reversal occur. In this paper, the finite element method is utilized to analyze electric field distribution and potential distribution of wall bushing during polarity reversal. Electric field distribution and potential distribution at the moment of polarity reversal are obtained, which provides value reference for the study of polarity reversal process.


2011 ◽  
Vol 130-134 ◽  
pp. 1413-1417
Author(s):  
You Hua Gao ◽  
Guo Wei Liu ◽  
Yan Bin Li ◽  
You Feng Gao

Numerical calculation model with compound insulation of transient electric field is given. The insulation is more prominent due to complication for voltage applied on valve side winding of the converter transformer. So the simplied structure for electric calculation on the valve side winding of the converter transformer is established. The electric field distribution characteristics on the valve side winding of the converter transformer is analyzed and electric fields in different resistivity and permittivity are calculated under AC high voltage, DC high voltage, AC superimposed DC voltage, polarity reversal voltage. The maximum electric field intensity is calculated and analyzed under kinds of high voltage. Some important influence factors for electric field distribution are also discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document