scholarly journals X-ray and UV emission of the ultrashort-period, low-mass eclipsing binary system BX Trianguli

2018 ◽  
Vol 619 ◽  
pp. A138
Author(s):  
V. Perdelwitz ◽  
S. Czesla ◽  
J. Robrade ◽  
T. Pribulla ◽  
J. H. M. M. Schmitt

Context.Close binary systems provide an excellent tool for determining stellar parameters such as radii and masses with a high degree of precision. Due to the high rotational velocities, most of these systems exhibit strong signs of magnetic activity, postulated to be the underlying reason for radius inflation in many of the components. Aims.We extend the sample of low-mass binary systems with well-known X-ray properties. Methods.We analyze data from a singular XMM-Newton pointing of the close, low-mass eclipsing binary system BX Tri. The UV light curve was modeled with the eclipsing binary modeling tool PHOEBE and data acquired with the EPIC cameras was analyzed to search for hints of orbital modulation. Results.We find clear evidence of orbital modulation in the UV light curve and show that PHOEBE is fully capable of modeling data within this wavelength range. Comparison to a theoretical flux prediction based on PHOENIX models shows that the majority of UV emission is of photospheric origin. While the X-ray light curve does exhibit strong variations, the signal-to-noise ratio of the observation is insufficient for a clear detection of signs of orbital modulation. There is evidence of a Neupert-like correlation between UV and X-ray data.

2021 ◽  
Vol 2145 (1) ◽  
pp. 012005
Author(s):  
N Lamlert ◽  
W Maithong

Abstract V781 Tau is one of W UMa eclipsing binary systems whose orbital period is 0.34 days. The 0.7-meter telescope with CCD photometric system in B and V filters was conducted at the Regional Observatory for the Public, Chachoengsao, Thailand during December 2018, UT. The Wilson-Devinney Technique was used for calculating the physical properties of V781 Tau. The results showed the inclination of their orbital is 66.140°±0.14. The effective temperature of the primary and secondary star is 6,060 and 5,881 K, respectively and the degree of contact is 4.38 %


2019 ◽  
Vol 55 (1) ◽  
pp. 65-72
Author(s):  
Raúl Michel ◽  
Francesco Acerbi ◽  
Carlo Barani ◽  
Massimiliano Martignoni

The first multicolor observations and light curve solutions of the eclipsing binary systems V1009 Per and CRTS J031642.2+332639 are presented. Using the 2005 version of the Wilson-Devinney code, both systems are found to be W UMa contact binaries. V1009 Per has a mass ratio of q = 0.362±0.002 and a shallow fill out parameter of f = 11.8 ± 0.6% while CRTS J031642.2+332639 has a mass ratio of q = 2.507±0.006 and a fill out of f = 13.6±0.4%. High orbital inclinations, i = 85◦.9 for V1009 Per and i = 83◦.2 for CRTS J031642.2+332639, imply that both systems are total eclipsing binaries and that the photometric parameters here obtained are reliable. Based on 16 times of minimum the orbital period variations of V1009 Per are discussed. The absolute dimensions of the systems are estimated and, from the log M − log L diagram, it is found that both components of the systems follow the general pattern of the W subtype W Ursae Majoris systems.


1986 ◽  
Vol 118 ◽  
pp. 261-263
Author(s):  
D. J. Sullivan ◽  
M. Walkington ◽  
E. Budding

Using our intermediate bandwidth photometric scanner, we have obtained light curve data at a range of spectral intervals for a number of close eclipsing binary systems. This paper reports briefly on the instrumentation system, the data obtained for two of the variables AE Phe and ε CrA, and a preliminary modelling of the light curves.


1994 ◽  
Vol 144 ◽  
pp. 207-209
Author(s):  
M. Siarkowski ◽  
J. Sylwester ◽  
P. Preś

AbstractUsing a new 3D deconvolution technique we analyze the X-ray light curve of TY Pyx eclipsing binary to model the corona around the system. Our result indicates the possible presence of an interstellar loop connecting the stars.


1976 ◽  
Vol 73 ◽  
pp. 19-25
Author(s):  
H. Gursky

Most of the strong galactic X-ray sources must be low mass, close binary systems, such as Her X-1 and Sco X-1. Two evolutionary scenarios are discussed, both involving type I supernovae that occur when mass-accreting white dwarfs are driven over their mass limit. In one, accepting the correctness of the idea that a neutron star or black hole is the seat of the X-ray emission, the SN occurs before the system is an X-ray source. Another possibility is that the white dwarf is the X-ray source, just prior to its collapse and the ensuing SN.


2018 ◽  
Vol 616 ◽  
pp. A161 ◽  
Author(s):  
V. Perdelwitz ◽  
F. H. Navarrete ◽  
J. Zamponi ◽  
R. E. Mennickent ◽  
M. Völschow ◽  
...  

Context. Although timing variations in close binary systems have been studied for a long time, their underlying causes are still unclear. A possible explanation is the so-called Applegate mechanism, where a strong, variable magnetic field can periodically change the gravitational quadrupole moment of a stellar component, thus causing observable period changes. One of the systems exhibiting such strong orbital variations is the RS CVn binary HR 1099, whose activity cycle has been studied by various authors via photospheric and chromospheric activity indicators, resulting in contradicting periods. Aims. We aim at independently determining the magnetic activity cycle of HR 1099 using archival X-ray data to allow for a comparison to orbital period variations. Methods. Archival X-ray data from 80 different observations of HR 1099 acquired with 12 different X-ray facilities and covering almost four decades were used to determine X-ray fluxes in the energy range of 2−10 keV via spectral fitting and flux conversion. Via the Lomb-Scargle periodogram we analyze the resulting long-term X-ray light curve to search for periodicities. Results. We do not detect any statistically significant periodicities within the X-ray data. An analysis of optical data of HR 1099 shows that the derivation of such periods is strongly dependent on the time coverage of available data, since the observed optical variations strongly deviate from a pure sine wave. We argue that this offers an explanation as to why other authors derive such a wide range of activity cycle periods based on optical data. We furthermore show that X-ray and optical variations are correlated in the sense that the star tends to be optically fainter when it is X-ray bright. Conclusions. We conclude that our analysis constitutes, to our knowledge, the longest stellar X-ray activity light curve acquired to date, yet the still rather sparse sampling of the X-ray data, along with stochastic flaring activity, does not allow for the independent determination of an X-ray activity cycle.


Author(s):  
R Pattnaik ◽  
K Sharma ◽  
K Alabarta ◽  
D Altamirano ◽  
M Chakraborty ◽  
...  

Abstract Low Mass X-ray binaries (LMXBs) are binary systems where one of the components is either a black hole or a neutron star and the other is a less massive star. It is challenging to unambiguously determine whether a LMXB hosts a black hole or a neutron star. In the last few decades, multiple observational works have tried, with different levels of success, to address this problem. In this paper, we explore the use of machine learning to tackle this observational challenge. We train a random forest classifier to identify the type of compact object using the energy spectrum in the energy range 5-25 keV obtained from the Rossi X-ray Timing Explorer archive. We report an average accuracy of 87±13% in classifying the spectra of LMXB sources. We further use the trained model for predicting the classes for LMXB systems with unknown or ambiguous classification. With the ever-increasing volume of astronomical data in the X-ray domain from present and upcoming missions (e.g., SWIFT, XMM-Newton, XARM, ATHENA, NICER), such methods can be extremely useful for faster and robust classification of X-ray sources and can also be deployed as part of the data reduction pipeline.


2020 ◽  
Vol 29 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Fatemeh Davoudi ◽  
Atila Poro ◽  
Fahri Alicavus ◽  
Afshin Halavati ◽  
Saeed Doostmohammadi ◽  
...  

AbstractNew observations of the eclipsing binary system V1848 Ori were carried out using the V filter resulting in a determination of new times of minima and new ephemeris were obtained. We presented the first complete analysis of the system’s orbital period behavior and analysis of O-C diagram done by the GA and MCMC approaches in OCFit code. The O-C diagram demonstrates a sinusoidal trend in the data; this trend suggests a cyclic change caused by the LITE effect with a period of 10.57 years and an amplitude of 7.182 minutes. It appears that there is a third body with mass function of f (m3) = 0.0058 M⊙ in this binary system. The light curves were analyzed using the Wilson-Devinney code to determine some geometrical and physical parameters of the system. These results show that V1848 Ori is a contact W UMa binary system with the mass ratio of q = 0.76 and a weak fillout factor of 5.8%. The O’Connell effect was not seen in the light curve and there is no need to add spot.


1974 ◽  
Vol 3 ◽  
pp. 89-107
Author(s):  
M. J. Rees

The discovery by Giacconi and his colleagues of variable X-ray sources in close binary systems certainly ranks as one of the highlights of astronomical research during the last 3 years. These remarkable objects have already been extensively studied, by optical and radio observations as well as in the X-ray band; and they seem likely to prove as significant and far-reaching in their implications as pulsars.The ‘Third Uhuru Catalogue’ (Giacconi et al., 1973a) contains about 160 sources, of which about 100 lie in our Galaxy. Their distribution over the sky (together with other arguments) suggests that these sources have luminosities of the general order 1036–1038 erg s−1, and that their typical distances are ˜ 10kpc. These galactic sources generally display rapid variability. Little else is known about most of them, but they are probably of the same general class as systems such as Her X1, Cen X3, Cyg X1 and Cyg X3. These sources have been investigated in detail, and in all cases one infers a system where the X-ray source is orbiting around a relatively ordinary star. Six sources have been optically identified, and there are some others whose binary nature is established by the occurrence of an X-ray eclipse. Orbital periods range from 4.8 h (Cyg X3) up to ˜ 10 days.


Sign in / Sign up

Export Citation Format

Share Document