Revista Mexicana de Astronomía y Astrofísica
Latest Publications


TOTAL DOCUMENTS

95
(FIVE YEARS 95)

H-INDEX

2
(FIVE YEARS 2)

Published By Universidad Nacional Autonoma De Mexico

0185-1101

2021 ◽  
Vol 57 (2) ◽  
pp. 351-361
Author(s):  
E. Yoldaş

This study presents results obtained from the data of KIC 6044064 (KOI 6652). KIC 6044064 was observed by the Kepler Mission for a total of 1384.254 days. 525 minima times were determined, 264 of which were primary minima and the rest were secondary minima. The OPEA model was derived and its parameters were obtained. On the secondary component, there are two different spot bands latitudinally outstretched, consisting of three spots located with a phase interval of 0.33. The average migration period was found to be 623.063±4.870 days (1.71±0.01 years) for the first spot group, while it was 1125.514±7.305 days (3.08±0.02 years) for the second group. The spectral types of the components seem to be G7V+K9V. Their masses and radii were determined to be 0.86Mʘ and 0.89Rʘ for the primary component and 0.54Mʘ and 0.62Rʘ for the secondary component.


2021 ◽  
Vol 57 (2) ◽  
pp. 279-295
Author(s):  
L. O. Marchi ◽  
D. M. Sanchez ◽  
F. C. F. Venditti ◽  
A. F. B. A. Prado ◽  
A. K. Misra

In this work, we study the effects of solar radiation pressure (SRP) on the problem of changing the orbit of an asteroid to support planetary defense, scientific research, or exploitation of materials. This alternative considers a tethered reflective balloon (or a set of reflective balloons) attached to the asteroid, with a high area-to-mass ratio, to use the SRP to deflect a potentially hazardous asteroid (PHA) or to approximate the target asteroid to Earth. The tether is assumed to be inextensible and massless, and the motion is described only in the orbital plane of the asteroid around the Sun. The model is then used to study the effects that the tether length, the reflectivity coefficient, and the area-to-mass ratio have on the deviation of the trajectory of the asteroid.


2021 ◽  
Vol 57 (2) ◽  
pp. 269-277
Author(s):  
A. Castellanos-Ramírez ◽  
A. C. Raga ◽  
J. Cantó ◽  
A. Rodríguez-González ◽  
L. Hernández-Martínez

High velocity clumps joined to the outflow source by emission with a “Hubble law” ramp of linearly increasing radial velocity vs. distance are observed in some planetary nebulae and in some outflows in star formation regions. We propose a simple model in which a “clump” is ejected from a source over a period τ0, with a strong axis to edge velocity stratification. This non-top hat cross section results in the production of a highly curved working surface (initially being pushed by the ejected material, and later coasting along due to its inertia). From both analytic models and numerical simulations we find that this working surface has a linear velocity vs. position ramp, and therefore reproduces in a qualitative way the “Hubble law clumps” in planetary nebulae and outflows from young stars.


2021 ◽  
Vol 57 (2) ◽  
pp. 381-389
Author(s):  
Y. H. M. Hendy ◽  
D. Bisht

We present a detailed photometric and kinematical analysis of the poorly studied open cluster IC 1434 using CCD VRI, APASS, and Gaia DR2 database for the first time. By determining the membership probability of stars we identify the 238 most probable members with a probability higher than 60%; by using proper motion and parallax data as taken from the Gaia DR2 catalog. The mean proper motion of the cluster is obtained as μx=−3.89±0.19 and μy=−3.34±0.19 mas yr−1 in both the directions of right ascension and declination. The radial distribution of member stars provides the cluster extent as 7.6 arcmin. We estimate the interstellar reddening E(B−V) as 0.34 mag using the transformation equations from the literature. We obtain the values of cluster age and distance as 631±73 Myr and 3.2±0.1 kpc.


2021 ◽  
Vol 57 (2) ◽  
pp. 297-309
Author(s):  
J. I. Castorena ◽  
A. C. Raga ◽  
A. Esquivel ◽  
A. Rodríguez-González ◽  
L. Hernández-Martínez ◽  
...  

We study the problem of a Herbig-Haro jet with a uniformly accelerating ejection velocity, travelling into a uniform environment. For the ejection density we consider two cases: a time-independent density, and a time-independent mass loss rate. For these two cases, we obtain analytic solutions for the motion of the jet head using a ram-pressure balance and a center of mass equation of motion. We also compute axisymmetric numerical simulations of the same flow, and compare the time-dependent positions of the leading working surface shocks with the predictions of the two analytic models. We find that if the jet is over-dense and over-pressured (with respect to the environment) during its evolution, a good agreement is obtained with the analytic models, with the flow initially following the center of mass analytic solution, and (for the constant ejection density case) at later times approaching the ram-pressure balance solution.


2021 ◽  
Vol 57 (2) ◽  
pp. 311-319
Author(s):  
M. Radwan ◽  
Nihad S. Abd El Motelp

The main goal of the present paper is to evaluate the perturbed locations and investigate the linear stability of the triangular points. We studied the problem in the elliptic restricted three body problem frame of work. The problem is generalized in the sense that the two primaries are considered as triaxial bodies. It was found that the locations of these points are affected by the triaxiality coefficients of the primaries and the eccentricity of orbits. Also, the stability regions depend on the involved perturbations. We also studied the periodic orbits in the vicinity of the triangular points.


2021 ◽  
Vol 57 (2) ◽  
pp. 251-268
Author(s):  
J. R. Sacahui ◽  
A. V. Penacchioni ◽  
A. Marinelli ◽  
A. Sharma ◽  
M. Castro ◽  
...  

Blazars are the most active extragalactic gamma-ray sources. They show sporadic bursts of activity, lasting from hours to months. In this work we present a 10-year analysis of a sample of bright sources detected by Fermi-LAT (100 MeV - 300 GeV). Using 2-week binned light curves (LC) we estimate the duty cycle (DC): fraction of time that the source spends in an active state. The objects show different DC values, with an average of 22.74% and 23.08% when considering (or not) the extragalactic background light ( EBL). Additionally, we study the so-called “blazar sequence” trend for the sample of selected blazars in the ten years of data. This analysis constrains a possible counterpart of sub-PeV neutrino emission during the quiescent states, leaving open the possibility to explain the observed IceCube signal during the flaring states.


2021 ◽  
Vol 57 (2) ◽  
pp. 445-457
Author(s):  
A. F. S. Ferreira ◽  
R. V. de Moraes ◽  
A. F. B. A. Prado ◽  
O. C. Winter ◽  
V. M. Gomes

The present paper surveys the more recent techniques related to the swingby maneuver, where a spacecraft changes its energy and angular momentum by passing close to celestial bodies. It is focused on the literature related to extensions of this maneuver, with emphasis in the powered version, where an impulse is applied to the spacecraft near the closest approach. Several mathematical models are considered, including the patched-conics approximation for analytical studies, and the restricted three-body problem for the numerical simulations. The main goal is to show the models and the main conclusions available in the literature for those maneuvers. Some key results are shown to discuss important aspects of this maneuver, including the analysis of the energy variation of the spacecraft, the behavior of the trajectories and other applications.


2021 ◽  
Vol 57 (2) ◽  
pp. 363-379
Author(s):  
E. Kiran ◽  
V. Bakiş ◽  
H. Bakiş ◽  
Ö. L. Değirmenci

We present accurate physical parameters of the eccentric binary system V990 Her which has an orbital period of P=8.193315±0.000003 days using its photometric and spectroscopic data. The physical parameters of the components were derived as Teff1=8000±200 K, Teff2=7570±200 K, M1=2.01±0.07 Mʘ, M2=1.83±0.03 Mʘ, R1=2.22±0.02 Rʘ, R2=2.12±0.01 Rʘ, log(L1/Lʘ)=1.25±0.04, log(L2/Lʘ)=1.12±0.05. Our findings revealed that both components are slightly evolved from the zero-age main sequence with an age of 6.3×108 years. We estimated an apsidal motion with a period of U=14683±2936 years in the system and the internal structure constants of the components were derived for the first time.


2021 ◽  
Vol 57 (2) ◽  
pp. 433-444
Author(s):  
E. Nagel ◽  
F. Gutiérrez-Canales ◽  
S. Morales-Gutiérrez ◽  
A. P. Sousa

In the stellar forming region NGC 2264 there are objects catalogued as hosting a transitional disk according to spectrum modeling. Four members of this set have optical and infrared light curves coming from the CoRoT and Spitzer telescopes. In this work, we try to simultaneously explain the light curves using the extinction of the stellar radiation and the emission of the dust inside the hole of a transitional disk. For the object Mon-296, we were successful. However, for Mon-314, and Mon-433 our evidence suggests that they host a pre-transitional disk. For Mon-1308 a new spectrum fitting using the 3D radiative transfer code Hyperion allows us to conclude that this object hosts a full disk instead of a transitional disk. This is in accord to previous work on Mon-1308 and with the fact that we cannot find a fit for the light curves using only the contribution of the dust inside the hole of a transitional disk.


Sign in / Sign up

Export Citation Format

Share Document