scholarly journals Latitudinal differential rotation in the solar analogues 16 Cygni A and B

2019 ◽  
Vol 623 ◽  
pp. A125 ◽  
Author(s):  
M. Bazot ◽  
O. Benomar ◽  
J. Christensen-Dalsgaard ◽  
L. Gizon ◽  
S. Hanasoge ◽  
...  

Context. Asteroseismology has undergone a profound transformation as a scientific field following the CoRoT and Kepler space missions. The latter is now yielding the first measurements of latitudinal differential rotation obtained directly from oscillation frequencies. Differential rotation is a fundamental mechanism of the stellar dynamo effect. Aims. Our goal is to measure the amount of differential rotation in the solar analogues 16 Cyg A and B, which are the components of a binary system. These stars are the brightest observed by Kepler and have therefore been extensively observed, with exquisite precision on their oscillation frequencies. Methods. We modelled the acoustic power spectrum of 16 Cyg A and B using a model that takes into account the contribution of differential rotation to the rotational frequency splitting. The estimation was carried out in a Bayesian setting. We then inverted these results to obtain the rotation profile of both stars under the assumption of a solar-like functional form. Results. We observe that the magnitude of latitudinal differential rotation has a strong chance of being solar-like for both stars, their rotation rates being higher at the equator than at the pole. The measured latitudinal differential rotation, defined as the difference of rotation rate between the equator and the pole, is 320 ± 269 nHz and 440−383+363 nHz for 16 Cyg A and B, respectively, confirming that the rotation rates of these stars are almost solar-like. Their equatorial rotation rates are 535 ± 75 nHz and 565−129+150 nHz. Our results are in good agreement with measurements obtained from spectropolarimetry, spectroscopy, and photometry. Conclusions. We present the first conclusive measurement of latitudinal differential rotation for solar analogues. Their rotational profiles are very close to those of the Sun. These results depend weakly on the uncertainties of the stellar parameters.

2017 ◽  
Author(s):  
Robson de Farias

<p>In the present work, a computational study is performed in order to clarify the possible magnetic nature of gold. For such purpose, gas phase Au<sub>2</sub> (zero charge) is modelled, in order to calculate its gas phase formation enthalpy. The calculated values were compared with the experimental value obtained by means of Knudsen effusion mass spectrometric studies [5]. Based on the obtained formation enthalpy values for Au<sub>2</sub>, the compound with two unpaired electrons is the most probable one. The calculated ionization energy of modelled Au<sub>2</sub> with two unpaired electrons is 8.94 eV and with zero unpaired electrons, 11.42 eV. The difference (11.42-8.94 = 2.48 eV = 239.29 kJmol<sup>-1</sup>), is in very good agreement with the experimental value of 226.2 ± 0.5 kJmol<sup>-1</sup> to the Au-Au bond<sup>7</sup>. So, as expected, in the specie with none unpaired electrons, the two 6s<sup>1</sup> (one of each gold atom) are paired, forming a chemical bond with bond order 1. On the other hand, in Au<sub>2</sub> with two unpaired electrons, the s-d hybridization prevails, because the relativistic contributions. A molecular orbital energy diagram for gas phase Au<sub>2</sub> is proposed, explaining its paramagnetism (and, by extension, the paramagnetism of gold clusters and nanoparticles).</p>


2019 ◽  
Vol 67 (6) ◽  
pp. 483-492
Author(s):  
Seonghyeon Baek ◽  
Iljae Lee

The effects of leakage and blockage on the acoustic performance of particle filters have been examined by using one-dimensional acoustic analysis and experimental methods. First, the transfer matrix of a filter system connected to inlet and outlet pipes with conical sections is measured using a two-load method. Then, the transfer matrix of a particle filter only is extracted from the experiments by applying inverse matrices of the conical sections. In the analytical approaches, the one-dimensional acoustic model for the leakage between the filter and the housing is developed. The predicted transmission loss shows a good agreement with the experimental results. Compared to the baseline, the leakage between the filter and housing increases transmission loss at a certain frequency and its harmonics. In addition, the transmission loss for the system with a partially blocked filter is measured. The blockage of the filter also increases the transmission loss at higher frequencies. For the simplicity of experiments to identify the leakage and blockage, the reflection coefficients at the inlet of the filter system have been measured using two different downstream conditions: open pipe and highly absorptive terminations. The experiments show that with highly absorptive terminations, it is easier to see the difference between the baseline and the defects.


2011 ◽  
Vol 287-290 ◽  
pp. 2916-2920
Author(s):  
Chun Yan Ban ◽  
Peng Qian ◽  
Xu Zhang ◽  
Qi Xian Ba ◽  
Jian Zhong Cui

The resistance of Al-21%Cu alloy under no magnetic field, DC magnetic field and AC magnetic field from liquid to solid was measured by a four-probe method. The difference of resistance versus temperature curves (R-T curves) was analyzed. It is found that the R-T curves of Al-21%Cu alloy are monotone decreasing and have two obvious turning points. Under DC magnetic field, the liquidus and solidus temperatures of the alloy both decrease, while under AC magnetic field, the liquidus and solidus temperatures both increase. There is a good agreement between the microstructure of quenching sample and R-T curves. The mechanism of the effect of magnetic fields was discussed.


2010 ◽  
Vol 43 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Leandro M. Acuña ◽  
Diego G. Lamas ◽  
Rodolfo O. Fuentes ◽  
Ismael O. Fábregas ◽  
Márcia C. A. Fantini ◽  
...  

The local atomic structures around the Zr atom of pure (undoped) ZrO2nanopowders with different average crystallite sizes, ranging from 7 to 40 nm, have been investigated. The nanopowders were synthesized by different wet-chemical routes, but all exhibit the high-temperature tetragonal phase stabilized at room temperature, as established by synchrotron radiation X-ray diffraction. The extended X-ray absorption fine structure (EXAFS) technique was applied to analyze the local structure around the Zr atoms. Several authors have studied this system using the EXAFS technique without obtaining a good agreement between crystallographic and EXAFS data. In this work, it is shown that the local structure of ZrO2nanopowders can be described by a model consisting of two oxygen subshells (4 + 4 atoms) with different Zr—O distances, in agreement with those independently determined by X-ray diffraction. However, the EXAFS study shows that the second oxygen subshell exhibits a Debye–Waller (DW) parameter much higher than that of the first oxygen subshell, a result that cannot be explained by the crystallographic model accepted for the tetragonal phase of zirconia-based materials. However, as proposed by other authors, the difference in the DW parameters between the two oxygen subshells around the Zr atoms can be explained by the existence of oxygen displacements perpendicular to thezdirection; these mainly affect the second oxygen subshell because of the directional character of the EXAFS DW parameter, in contradiction to the crystallographic value. It is also established that this model is similar to another model having three oxygen subshells, with a 4 + 2 + 2 distribution of atoms, with only one DW parameter for all oxygen subshells. Both models are in good agreement with the crystal structure determined by X-ray diffraction experiments.


1988 ◽  
Vol 66 (4) ◽  
pp. 791-793 ◽  
Author(s):  
David Smith

The rotational potential functions for the borohydride ion embedded in potassium and rubidium halides are derived from atom–atom potentials of the Buckingham (exp-6) type. The librational frequencies computed from the potential functions are in good agreement with the observed frequencies. The potential functions for rubidium and potassium borohydrides derived from the atom–atom potentials yield librational frequencies that are about 10% higher than the observed values. Since the entropy of transition for potassium and rubidium borohydrides is less than expected, there is a possibility that there is some ordering of the borohydride ions above the transition temperature. An experimental method is presented for studying the ordering of the borohydride ions based on the difference in the ground level degeneracy of a tetrahedral ion in ordered and disordered states.


2004 ◽  
Vol 19 (12) ◽  
pp. 3607-3613 ◽  
Author(s):  
H. Iikawa ◽  
M. Nakao ◽  
K. Izumi

Separation by implemented oxygen (SIMOX)(111) substrates have been formed by oxygen-ion (16O+) implantation into Si(111), showing that a so-called “dose-window” at 16O+-implantation into Si differs from Si(100) to Si(111). In SIMOX(100), an oxygen dose of 4 × 1017/cm2 into Si(100) is widely recognized as the dose-window when the acceleration energy is 180 keV. For the first time, our work shows that an oxygen dose of 5 × 1017/cm2 into Si(111) is the dose-window for the formation of SIMOX(111) substrates when the acceleration energy is 180 keV. The difference between dose-windows is caused by anisotropy of the crystal orientation during growth of the faceted buried SiO2. We also numerically analyzed the data at different oxidation velocities for each facet of the polyhedral SiO2 islands. Numerical analysis results show good agreement with the experimental data.


1925 ◽  
Vol 22 (4) ◽  
pp. 491-492 ◽  
Author(s):  
R. R. S. Cox

Since the publication of a previous paper on chemical constants, some further experimental data upon the dissociation of chlorine by Wohl have appeared, from which a new and rather more satisfactory value of the chemical constant of diatomic chlorine can be calculated. Wohl concludes that Q0, the heat of dissociation at absolute zero, is – 57,000 calories. This is in good agreement with Henglein's value – 54,000 but differs from that of Trautz and Stackel, namely – 71,000, which is the value adopted in the previous paper. Q0 is necessarily an adjustable constant, and since Wold's value gives results which are a good deal more concordant with each other and with the theory, we now take Q0 = − 57,000. Wohl also uses hv0/k = 902 instead of 1093, but as the difference made by this change is very small compared with other disagreements, we retain the value 1093. The following table gives the new values of Γ (Cl2), calculated in the same way as before. The initials at the heads of the columns refer to the results of Henglein, Trautz and Wohl respectively.


2010 ◽  
Vol 27 (3) ◽  
pp. 639-661 ◽  
Author(s):  
Woocheol Kim ◽  
Oliver Linton

We propose a semiparametric IGARCH model that allows for persistence in variance but also allows for more flexible functional form. We assume that the difference of the squared process is weakly stationary. We propose an estimation strategy based on the nonparametric instrumental variable method. We establish the rate of convergence of our estimator.


Author(s):  
Jerome Kagan

This chapter analyzes how subject expectations affect all brain measures. An expectation of pain, a difficult task, an unpleasant picture, an air puff to the face, the sound of hands clapping, a metaphorical sentence, a caress, cocaine, an exemplar of a semantic category, or the benefit of a medicine each affects brain profiles as well as the speed and accuracy of perceptions. Meanwhile, unexpected events activate many brain sites, but especially the amygdala, hippocampus, prefrontal cortex, ventral tegmental area, and locus ceruleus. The difference in the oscillation frequencies evoked by the event anticipated and the one that occurs may be a critical cause of these activations. The brain and psychological states generated by an unexpected event depend on its desirability and familiarity.


2020 ◽  
Vol 498 (3) ◽  
pp. 3758-3781 ◽  
Author(s):  
Adam S Jermyn ◽  
Shashikumar M Chitre ◽  
Pierre Lesaffre ◽  
Christopher A Tout

ABSTRACT We derive the scaling of differential rotation in both slowly and rapidly rotating convection zones using order of magnitude methods. Our calculations apply across stars and fluid planets and all rotation rates, as well as to both magnetized and purely hydrodynamic systems. We find shear |R∇Ω| of order the angular frequency Ω for slowly rotating systems with Ω ≪ |N|, where N is the Brünt–Väisälä frequency, and find that it declines as a power law in Ω for rapidly rotating systems with Ω ≫ |N|. We further calculate the meridional circulation rate and baroclinicity and examine the magnetic field strength in the rapidly rotating limit. Our results are in general agreement with simulations and observations and we perform a detailed comparison with those in a companion paper.


Sign in / Sign up

Export Citation Format

Share Document