knudsen effusion
Recently Published Documents


TOTAL DOCUMENTS

334
(FIVE YEARS 38)

H-INDEX

25
(FIVE YEARS 3)

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1478
Author(s):  
Anatoliy M. Dunaev ◽  
Vladimir B. Motalov ◽  
Lev S. Kudin

A multi-technique approach based on Knudsen effusion mass spectrometry, gas phase chromatography, mass spectrometry, NMR and IR spectroscopy, thermal analysis, and quantum-chemical calculations was used to study the evaporation of 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4). The saturated vapor over BMImBF4 was shown to have a complex composition which consisted of the neutral ion pairs (NIPs) [BMIm+][BF4−], imidazole-2-ylidene C8N2H14BF3, 1-methylimidazole C4N2H6, 1-butene C4H8, hydrogen fluoride HF, and boron trifluoride BF3. The vapor composition strongly depends on the evaporation conditions, shifting from congruent evaporation in the form of NIP under Langmuir conditions (open surface) to primary evaporation in the form of decomposition products under equilibrium conditions (Knudsen cell). Decomposition into imidazole-2-ylidene and HF is preferred. The vapor composition of BMImBF4 is temperature-depended as well: the fraction ratio of [BMIm+][BF4−] NIPs to decomposition products decreased by about a factor of three in the temperature range from 450 K to 510 K.


Calphad ◽  
2021 ◽  
Vol 73 ◽  
pp. 102258
Author(s):  
František Zelenka ◽  
Jakub Strádal ◽  
Pavel Brož ◽  
Jan Vřešťál ◽  
Jiří Buršík ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2945
Author(s):  
Yuriy A. Zhabanov ◽  
Alexey V. Eroshin ◽  
Igor V. Ryzhov ◽  
Ilya A. Kuzmin ◽  
Daniil N. Finogenov ◽  
...  

The Knudsen effusion method with mass spectrometric control of the vapor composition was used to study the possibility of a congruent transition to the gas phase and to estimate the enthalpy of sublimation of metal-free tetrakis(1,2,5-thiadiazolo)porphyrazine and its nickel complex (H2TTDPz and NiTTDPz, respectively). The geometrical and electronic structure of H2TTDPz and NiTTDPz in ground and low-lying excited electronic states were determined by DFT calculations. The electronic structure of NiTTDPz was studied by the complete active space (CASSCF) method, following accounting dynamic correlation by multiconfigurational quasi-degenerate second-order perturbation theory (MCQDPT2). A geometrical structure of D2h and D4h symmetry was obtained for H2TTDPz and NiTTDPz, respectively. According to data obtained by the MCQDPT2 method, the nickel complex possesses the ground state 1A1g, and the wave function of the ground state has the form of a single determinant. Electronic absorption and vibrational (IR and resonance Raman) spectra of H2TTDPz and NiTTDPz were studied experimentally and simulated theoretically.


Author(s):  
Viktor A. Vorozhtcov ◽  
Valentina L. Stolyarova ◽  
Andrey L. Shilov ◽  
Sergey I. Lopatin ◽  
Sergey M. Shugurov ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 397
Author(s):  
Petroc Shelley ◽  
Thomas J. Bannan ◽  
Stephen D. Worrall ◽  
M. Rami Alfarra ◽  
Carl J. Percival ◽  
...  

Benzaldehydes are components of atmospheric aerosol that are poorly represented in current vapour pressure predictive techniques. In this study the solid state (PSsat) and sub-cooled liquid saturation vapour pressures (PLsat) were measured over a range of temperatures (298–328 K) for a chemically diverse group of benzaldehydes. The selected benzaldehydes allowed for the effects of varied geometric isomers and functionalities on saturation vapour pressure (Psat) to be probed. PSsat was measured using Knudsen effusion mass spectrometry (KEMS) and PLsat was obtained via a sub-cooled correction utilising experimental enthalpy of fusion and melting point values measured using differential scanning calorimetry (DSC). The strength of the hydrogen bond (H-bond) was the most important factor for determining PLsat when a H-bond was present and the polarisability of the compound was the most important factor when a H-bond was not present. Typically compounds capable of hydrogen bonding had PLsat 1 to 2 orders of magnitude lower than those that could not H-bond. The PLsat were compared to estimated values using three different predictive techniques (Nannoolal et al. vapour pressure method, Myrdal and Yalkowsky method, and SIMPOL). The Nannoolal et al. vapour pressure method and the Myrdal and Yalkowsky method require the use of a boiling point method to predict Psat. For the compounds in this study the Nannoolal et al. boiling point method showed the best performance. All three predictive techniques showed less than an order of magnitude error in PLsat on average, however more significant errors were within these methods. Such errors will have important implications for studies trying to ascertain the role of these compounds on aerosol growth and human health impacts. SIMPOL predicted PLsat the closest to the experimentally determined values.


Sign in / Sign up

Export Citation Format

Share Document