scholarly journals Magnetic field transport in compact binaries

2020 ◽  
Vol 641 ◽  
pp. A133
Author(s):  
N. Scepi ◽  
G. Lesur ◽  
G. Dubus ◽  
J. Jacquemin-Ide

Context. Dwarf novæ (DNe) and low mass X-ray binaries (LMXBs) show eruptions that are thought to be due to a thermal-viscous instability in their accretion disk. These eruptions provide constraints on angular momentum transport mechanisms. Aims. We explore the idea that angular momentum transport could be controlled by the dynamical evolution of the large-scale magnetic field. We study the impact of different prescriptions for the magnetic field evolution on the dynamics of the disk. This is a first step in confronting the theory of magnetic field transport with observations. Methods. We developed a version of the disk instability model that evolves the density, the temperature, and the large-scale vertical magnetic flux simultaneously. We took into account the accretion driven by turbulence or by a magnetized outflow with prescriptions taken, respectively, from shearing box simulations or self-similar solutions of magnetized outflows. To evolve the magnetic flux, we used a toy model with physically motivated prescriptions that depend mainly on the local magnetization β, where β is the ratio of thermal pressure to magnetic pressure. Results. We find that allowing magnetic flux to be advected inwards provides the best agreement with DNe light curves. This leads to a hybrid configuration with an inner magnetized disk, driven by angular momentum losses to an MHD outflow, sharply transiting to an outer weakly-magnetized turbulent disk where the eruptions are triggered. The dynamical impact is equivalent to truncating a viscous disk so that it does not extend down to the compact object, with the truncation radius dependent on the magnetic flux and evolving as Ṁ−2/3. Conclusions. Models of DNe and LMXB light curves typically require the outer, viscous disk to be truncated in order to match the observations. There is no generic explanation for this truncation. We propose that it is a natural outcome of the presence of large-scale magnetic fields in both DNe and LMXBs, with the magnetic flux accumulating towards the center to produce a magnetized disk with a fast accretion timescale.

2018 ◽  
Vol 620 ◽  
pp. A49 ◽  
Author(s):  
N. Scepi ◽  
G. Lesur ◽  
G. Dubus ◽  
M. Flock

Dwarf novae (DNe) are accreting white dwarfs that show eruptions caused by a thermal-viscous instability in the accretion disk. The outburst timescales constrain α, the ratio of the viscous stress to the thermal pressure, which phenomenologically connects to the mechanism of angular momentum transport. The eruptive state has α  ≈  0.1 while the quiescent state has α  ≈  0.03. Turbulent transport that is due to the magneto-rotational instability (MRI) is generally considered to be the source of angular momentum transport in DNe. The presence of a large-scale poloidal field threading the disk is known to enhance MRI-driven transport. Here, we perform 3D local magnetohydrodynamic (MHD) shearing-box simulations including vertical stratification, radiative transfer, and a net constant vertical magnetic flux to investigate how transport changes between the outburst and quiescent states of DNe. We find that a net vertical constant magnetic field, as could be provided by the white dwarf or by its stellar companion, provides a higher α in quiescence than in outburst, in opposition to what is expected. Including resistivity quenches MRI turbulence in quiescence, suppressing transport, unless the magnetic field is high enough, which again leads to α  ≈  0.1. A major difference between simulations with a net poloidal flux and simulations without a net flux is that angular momentum transport in the former is shared between turbulent radial transport and wind-driven vertical transport. We find that wind-driven transport dominates in quiescence even for moderately low magnetic fields ∼1 G. This can have a great impact on observational signatures since wind-driven transport does not heat the disk. Furthermore, wind transport cannot be reduced to an α prescription. We provide fits to the dependence of α with β, the ratio of thermal to magnetic pressure, and Teff, the effective temperature of the disk, as well as a prescription for the wind torque as a function of β that is in agreement with both local and global simulations. We conclude that the evolution of the thermal-viscous instability, and its consequences on the outburst cycles of CVs, needs to be thoroughly revised to take into account that most of the accretion energy may be carried away by a wind instead of being locally dissipated.


2001 ◽  
Vol 200 ◽  
pp. 410-414
Author(s):  
Günther Rüdiger ◽  
Udo Ziegler

Properties have been demonstrated of the magneto-rotational instability for two different applications, i.e. for a global spherical model and a box simulation with Keplerian background shear flow. In both nonlinear cases a dynamo operates with a negative (positive) α-effect in the northern (southern) disk hemisphere and in both cases the angular momentum transport is outwards. Keplerian accretion disks should therefore exhibit large-scale magnetic fields with a dipolar geometry of the poloidal components favoring jet formation.


1996 ◽  
Vol 171 ◽  
pp. 405-405 ◽  
Author(s):  
S. von Linden ◽  
J. Heidt ◽  
H.P. Reuter ◽  
R. Wielebinski

The large-scale dynamics and evolution of disk galaxies is controlled by the angular-momentum transport provided by non-axisymmetric perturbances through their gravity torques. To continuously maintain such gravitational instabilities, the presence of the gas component and its dissipative character are essential.


1993 ◽  
Vol 157 ◽  
pp. 395-401 ◽  
Author(s):  
Harald Lesch

Stimulated by recent high frequency radio polarization measurements of M83 and M51, we consider the influence of non-axisymmetric features (bars, spiral arms, etc…) on galactic magnetic fields. The time scale for the field amplification due to the non-axisymmetric velocity field is related to the time scale of angular momentum transport in the disk by the non-axisymmetric features. Due to its dissipational character (cooling and angular momentum transport) the gas plays a major role for the excitation of non-axisymmetric instabilities. Since it is the gaseous component of the interstellar gas in which magnetic field amplification takes place we consider the interplay of gasdynamical processes triggered by gravitational instabilities and magnetic fields. A comparison with the time scale for dynamo action in a disk from numerical models for disk dynamos gives the result that field amplification by non-axisymmetric features is faster in galaxies like M83 (strong bar) and M51 (compagnion and very distinct spiral structure), than amplification by an axisymmetric dynamo. Furthermore, we propose that axisymmetric gravitational instabilities may provide the turbulent magnetic diffusivity ηT. Based on standard galaxy models we obtain a radially dependent diffusivity whose numerical value rises from 1025cm2s−1 to 1027cm2s−1, declining for large radii.


2019 ◽  
Vol 631 ◽  
pp. A77 ◽  
Author(s):  
L. Amard ◽  
A. Palacios ◽  
C. Charbonnel ◽  
F. Gallet ◽  
C. Georgy ◽  
...  

Aims.We present an extended grid of state-of-the art stellar models for low-mass stars including updated physics (nuclear reaction rates, surface boundary condition, mass-loss rate, angular momentum transport, rotation-induced mixing, and torque prescriptions). We evaluate the impact of wind braking, realistic atmospheric treatment, rotation, and rotation-induced mixing on the structural and rotational evolution from the pre-main sequence (PMS) to the turn-off.Methods.Using the STAREVOL code, we provide an updated PMS grid. We computed stellar models for seven different metallicities, from [Fe/H] = −1 dex to [Fe/H] = +0.3 dex with a solar composition corresponding toZ = 0.0134. The initial stellar mass ranges from 0.2 to 1.5M⊙with extra grid refinement around one solar mass. We also provide rotating models for three different initial rotation rates (slow, median, and fast) with prescriptions for the wind braking and disc-coupling timescale calibrated on observed properties of young open clusters. The rotational mixing includes the most recent description of the turbulence anisotropy in stably stratified regions.Results.The overall behaviour of our models at solar metallicity, and their constitutive physics, are validated through a detailed comparison with a variety of distributed evolutionary tracks. The main differences arise from the choice of surface boundary conditions and initial solar composition. The models including rotation with our prescription for angular momentum extraction and self-consistent formalism for angular momentum transport are able to reproduce the rotation period distribution observed in young open clusters over a wide range of mass values. These models are publicly available and can be used to analyse data coming from present and forthcoming asteroseismic and spectroscopic surveys such asGaia, TESS, and PLATO.


2017 ◽  
Vol 609 ◽  
pp. A3 ◽  
Author(s):  
H. F. Song ◽  
G. Meynet ◽  
A. Maeder ◽  
S. Ekström ◽  
P. Eggenberger ◽  
...  

Context. Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. Aims. We study the interactions between the process of wind magnetic braking and tides in close binary systems. Methods. We discuss the evolution of a 10 M⊙ star in a close binary system with a 7 M⊙ companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙ star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. Results. We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. This “equilibrium angular velocity” is always inferior to the angular orbital velocity. In a given close binary system at this equilibrium stage, the difference between the spin and the orbital angular velocities becomes larger when the mass losses and/or the surface magnetic field increase. The treatment of the internal angular momentum transport has a strong impact on the evolutionary tracks in the Hertzsprung-Russell Diagram as well as on the changes of the surface abundances resulting from rotational mixing. Our modelling suggests that the presence of an undetected close companion might explain rapidly rotating stars with strong surface magnetic fields, having ages well above the magnetic braking timescale. Our models predict that the rotation of most stars of this type increases as a function of time, except for a first initial phase in spin-down systems. The measure of their surface abundances, together, when possible, with their mass-luminosity ratio, provide interesting constraints on the transport efficiencies of angular momentum and chemical species. Conclusions. Close binaries, when studied at phases predating any mass transfer, are key objects to probe the physics of rotation and magnetic fields in stars.


2018 ◽  
Vol 609 ◽  
pp. A77 ◽  
Author(s):  
N. Scepi ◽  
G. Lesur ◽  
G. Dubus ◽  
M. Flock

The eruptive cycles of dwarf novae are thought to be due to a thermal-viscous instability in the accretion disk surrounding the white dwarf. This model has long been known to imply enhanced angular momentum transport in the accretion disk during outburst. This is measured by the stress to pressure ratio α, with α ≈ 0.1 required in outburst compared to α ≈ 0.01 in quiescence. Such an enhancement in α has recently been observed in simulations of turbulent transport driven by the magneto-rotational instability (MRI) when convection is present, without requiring a net magnetic flux. We independently recover this result by carrying out PLUTO magnetohydrodynamic (MHD) simulations of vertically stratified, radiative, shearing boxes with the thermodynamics and opacities appropriate to dwarf novae. The results are robust against the choice of vertical boundary conditions. The thermal equilibrium solutions found by the simulations trace the well-known S-curve in the density-temperature plane that constitutes the core of the disk thermal-viscous instability model. We confirm that the high values of α ≈ 0.1 occur near the tip of the hot branch of the S-curve, where convection is active. However, we also present thermally stable simulations at lower temperatures that have standard values of α ≈ 0.03 despite the presence of vigorous convection. We find no simple relationship between α and the strength of the convection, as measured by the ratio of convective to radiative flux. The cold branch is only very weakly ionized so, in the second part of this work, we studied the impact of non-ideal MHD effects on transport. Ohmic dissipation is the dominant effect in the conditions of quiescent dwarf novae. We include resistivity in the simulations and find that the MRI-driven transport is quenched (α ≈ 0) below the critical density at which the magnetic Reynolds number Rm ≤ 104. This is problematic because the X-ray emission observed in quiescent systems requires ongoing accretion onto the white dwarf. We verify that these X-rays cannot self-sustain MRI-driven turbulence by photo-ionizing the disk and discuss possible solutions to the issue of accretion in quiescence.


2019 ◽  
Vol 492 (1) ◽  
pp. 58-71 ◽  
Author(s):  
M Bugli ◽  
J Guilet ◽  
M Obergaulinger ◽  
P Cerdá-Durán ◽  
M A Aloy

ABSTRACT The magnetic field is believed to play an important role in at least some core-collapse supernovae (CCSN) if its magnitude reaches $10^{15}\, \rm {G}$, which is a typical value for a magnetar. In the presence of fast rotation, such a strong magnetic field can drive powerful jet-like explosions if it has the large-scale coherence of a dipole. The topology of the magnetic field is, however, probably much more complex with strong multipolar and small-scale components and the consequences for the explosion are so far unclear. We investigate the effects of the magnetic field topology on the dynamics of CCSN and the properties of the forming proto-neutron star (PNS) by comparing pre-collapse fields of different multipolar orders and radial profiles. Using axisymmetric special relativistic MHD simulations and a two-moment neutrino transport, we find that higher multipolar magnetic configurations lead to generally less energetic explosions, slower expanding shocks, and less collimated outflows. Models with a low order multipolar configuration tend to produce more oblate PNS, surrounded in some cases by a rotationally supported toroidal structure of neutron-rich material. Moreover, magnetic fields which are distributed on smaller angular scales produce more massive and faster rotating central PNS, suggesting that higher order multipolar configurations tend to decrease the efficiency of the magnetorotational launching mechanism. Even if our dipolar models systematically display a far more efficient extraction of the rotational energy of the PNS, fields distributed on smaller angular scales are still capable of powering magnetorotational explosions and shape the evolution of the central compact object.


2019 ◽  
Vol 626 ◽  
pp. A116 ◽  
Author(s):  
Nicolas Scepi ◽  
Guillaume Dubus ◽  
Geoffroy Lesur

Context. Dwarf novae (DNe) and X-ray binaries exhibit outbursts thought to be due to a thermal-viscous instability in the accretion disk. The disk instability model (DIM) assumes that accretion is driven by turbulent transport, customarily attributed to the magneto-rotational instability (MRI). However, recent results point out that MRI turbulence alone fails to reproduce the light curves of DNe. Aims. Our aim is to study the impact of wind-driven accretion on the light curves of DNe. Local and global simulations show that magneto-hydrodynamic winds are present when a magnetic field threads the disk, even for relatively high ratios of thermal pressure to magnetic pressure (β ≈ 105). These winds are very efficient in removing angular momentum but do not heat the disk, thus they do not behave as MRI-driven turbulence. Methods. We add the effect of wind-driven magnetic braking in the angular momentum equation of the DIM but neglect the mass loss due to the wind. We assume a fixed magnetic configuration: dipolar or constant with radius. We use prescriptions for the wind torque and the turbulent torque derived from shearing box simulations. Results. The wind torque enhances the accretion of matter, resulting in light curves that look like DNe outbursts when assuming a dipolar field with a moment μ ≈ 1030 G cm3. In the region where the wind torque dominates the disk is cold and optically thin, and the accretion speed is super-sonic. The inner disk behaves as if truncated, leading to higher quiescent X-ray luminosities from the white dwarf boundary layer than expected with the standard DIM. The disk is stabilized if the wind-dominated region is large enough, potentially leading to “dark” disks that emitting little radiation. Conclusion. Wind-driven accretion can play a key role in shaping the light curves of DNe and X-ray binaries. Future studies will need to include the time evolution of the magnetic field threading the disk to fully assess its impact on the dynamics of the accretion flow.


Sign in / Sign up

Export Citation Format

Share Document