scholarly journals Detailed abundances in a sample of very metal-poor stars

2020 ◽  
Vol 642 ◽  
pp. A25
Author(s):  
P. François ◽  
S. Wanajo ◽  
E. Caffau ◽  
N. Prantzos ◽  
W. Aoki ◽  
...  

Context. Unevolved metal-poor stars bore witness to the early evolution of the Galaxy, and the determination of their detailed chemical composition is an important tool to understand its chemical history. The study of their chemical composition can also be used to constrain the nucleosynthesis of the first generation of supernovae that enriched the interstellar medium. Aims. We aim to observe a sample of extremely metal-poor star (EMP stars) candidates selected from the Sloan Digital Sky Survey data release 12 (SDSS DR12) and determine their chemical composition. Methods. We obtained high-resolution spectra of a sample of five stars using HDS on Subaru telescope and used standard 1D models to compute the abundances. The stars we analysed have a metallicity [Fe/H] of between −3.50 and −4.25 dex. Results. We confirm that the five metal-poor candidates selected from low-resolution spectra are very metal poor. We present the discovery of a new ultra metal-poor star (UMP star) with a metallicity of [Fe/H] = −4.25 dex (SDSS J1050032.34−241009.7). We measured in this star an upper limit of lithium (log(Li/H) ≤ 2.0. We found that the four most metal-poor stars of our sample have a lower lithium abundance than the Spite plateau lithium value. We obtain upper limits for carbon in the sample of stars. None of them belong to the high carbon band. We measured abundances of Mg and Ca in most of the stars and found three new α-poor stars.

2018 ◽  
Vol 619 ◽  
pp. A10 ◽  
Author(s):  
P. François ◽  
E. Caffau ◽  
S. Wanajo ◽  
D. Aguado ◽  
M. Spite ◽  
...  

Context. The most metal-poor stars are the relics of the early chemical evolution of the Galaxy. Their chemical composition is an important tool to constrain the nucleosynthesis in the first generation of stars. The aim is to observe a sample of extremely metal-poor star (EMP stars) candidates selected from the Sloan Digital Sky Survey Data Release 12 (SDSS DR12) and determine their chemical composition. Aims. We obtain medium resolution spectra of a sample of six stars using the X-shooter spectrograph at the Very Large Telescope (VLT) and we used ATLAS models to compute the abundances. Methods. Five stars of the sample have a metallicity [Fe/H] between −2.5 dex and −3.2 dex. We confirm the recent discovery of SDSS J002314.00+030758.0 as a star with an extremely low [Fe/H] ratio. Assuming the α-enhancement [Ca/Fe] = +0.4 dex, we obtain [Fe/H] = −6.1 dex. Results. We could also determine its magnesium abundance and found that this star exhibits a very high ratio [Mg/Fe]≤ +3.60 dex assuming [Fe/H] = −6.13 dex. We determined the carbon abundance and found A(C) = 6.4 dex. From this carbon abundance, this stars belongs to the lower band of the A(C)–[Fe/H] diagram.


2008 ◽  
Vol 4 (S254) ◽  
pp. 461-468
Author(s):  
Timothy C. Beers ◽  
Young Sun Lee ◽  
Daniela Carollo

AbstractThe Sloan Extension for Galactic Exploration and Understanding (SEGUE) has now been completed. This is one of three surveys that were executed as part of the first extension of the Sloan Digital Sky Survey (SDSS-II), which consist of LEGACY, SUPERNOVA SURVEY, and SEGUE. The SEGUE program has obtained over 3600 square degrees of ugriz imaging of the sky outside the original SDSS-I footprint. The regions of sky targeted for SEGUE imaging were primarily at lower Galactic latitudes (|b| < 35°), in order to better sample the disk/halo interface of the Milky Way. SEGUE also obtained medium-resolution (R = 2000) spectroscopy, over the wavelength range 3800-9200 Å, for over 200,000 stars in 200 selected areas over the sky available from Apache Point, New Mexico. We discuss the determination of stellar atmospheric parameters (Teff, log g, and [Fe/H]) for these stars, and highlight several of the scientific results obtained to date. The proposed second extension of SDSS, known as SDSS-III, will include SEGUE-2, a program to roughly double the numbers of stars with available spectroscopy, as well as APOGEE, a program to obtain high-resolution (R = 20000) near-IR spectroscopy for over 100,000 stars in the disk, bulge and halo populations of the Galaxy. Other massive spectroscopic surveys of interest to Galactic science are also briefly discussed.


2021 ◽  
Vol 503 (3) ◽  
pp. 4309-4319
Author(s):  
Jong Chul Lee ◽  
Ho Seong Hwang ◽  
Hyunmi Song

ABSTRACT To study environmental effects on the circumgalactic medium (CGM), we use the samples of redMaPPer galaxy clusters, background quasars, and cluster galaxies from the Sloan Digital Sky Survey (SDSS). With ∼82 000 quasar spectra, we detect 197 Mg ii absorbers in and around the clusters. The detection rate per quasar is 2.7 ± 0.7 times higher inside the clusters than outside the clusters, indicating that Mg ii absorbers are relatively abundant in clusters. However, when considering the galaxy number density, the absorber-to-galaxy ratio is rather low inside the clusters. If we assume that Mg ii absorbers are mainly contributed by the CGM of massive star-forming galaxies, a typical halo size of cluster galaxies is smaller than that of field galaxies by 30 ± 10 per cent. This finding supports that galaxy haloes can be truncated by interaction with the host cluster.


2018 ◽  
Vol 15 (3) ◽  
pp. 314-323
Author(s):  
Baghdad Science Journal

Two galaxies have been chosen, spiral galaxy NGC 5005 and elliptical galaxy NGC 4278 to study their photometric properties by using surface photometric techniques with griz-Filters. Observations are obtained from the Sloan Digital Sky Survey (SDSS). The data reduction of all images have done, like bias and flat field, by SDSS pipeline. The overall structure of the two galaxies (a bulge, a disk), together with isophotal contour maps, surface brightness profiles and a bulge/disk decomposition of the galaxy images were performed, although the disk position angle, ellipticity and inclination of the galaxies have been estimated.


2020 ◽  
Vol 497 (4) ◽  
pp. 4077-4090 ◽  
Author(s):  
Suman Sarkar ◽  
Biswajit Pandey

ABSTRACT A non-zero mutual information between morphology of a galaxy and its large-scale environment is known to exist in Sloan Digital Sky Survey (SDSS) upto a few tens of Mpc. It is important to test the statistical significance of these mutual information if any. We propose three different methods to test the statistical significance of these non-zero mutual information and apply them to SDSS and Millennium run simulation. We randomize the morphological information of SDSS galaxies without affecting their spatial distribution and compare the mutual information in the original and randomized data sets. We also divide the galaxy distribution into smaller subcubes and randomly shuffle them many times keeping the morphological information of galaxies intact. We compare the mutual information in the original SDSS data and its shuffled realizations for different shuffling lengths. Using a t-test, we find that a small but statistically significant (at $99.9{{\ \rm per\ cent}}$ confidence level) mutual information between morphology and environment exists upto the entire length-scale probed. We also conduct another experiment using mock data sets from a semi-analytic galaxy catalogue where we assign morphology to galaxies in a controlled manner based on the density at their locations. The experiment clearly demonstrates that mutual information can effectively capture the physical correlations between morphology and environment. Our analysis suggests that physical association between morphology and environment may extend to much larger length-scales than currently believed, and the information theoretic framework presented here can serve as a sensitive and useful probe of the assembly bias and large-scale environmental dependence of galaxy properties.


2019 ◽  
Vol 629 ◽  
pp. A7
Author(s):  
Mikkel O. Lindholmer ◽  
Kevin A. Pimbblet

In this work we use the property that, on average, star formation rate increases with redshift for objects with the same mass – the so called galaxy main sequence – to measure the redshift of galaxy clusters. We use the fact that the general galaxy population forms both a quenched and a star-forming sequence, and we locate these ridges in the SFR–M⋆ plane with galaxies taken from the Sloan Digital Sky Survey in discrete redshift bins. We fitted the evolution of the galaxy main sequence with redshift using a new method and then subsequently apply our method to a suite of X-ray selected galaxy clusters in an attempt to create a new distance measurement to clusters based on their galaxy main sequence. We demonstrate that although it is possible in several galaxy clusters to measure the main sequences, the derived distance and redshift from our galaxy main sequence fitting technique has an accuracy of σz = ±0.017 ⋅ (z + 1) and is only accurate up to z ≈ 0.2.


2000 ◽  
Vol 198 ◽  
pp. 356-357 ◽  
Author(s):  
M. Spite ◽  
F. Spite ◽  
R. Cayrel ◽  
V. Hill ◽  
E. Depagne ◽  
...  

We present a determination of the lithium abundance from high quality spectra in an extremely metal poor star where the lithium line had not been detected.


Author(s):  
K. Wolfinger ◽  
V. A. Kilborn ◽  
E. V. Ryan-Weber ◽  
B. S. Koribalski

AbstractWe identify gravitationally bound structures in the Ursa Major region using positions, velocities and photometry from the Sloan Digital Sky Survey (SDSS DR7) and the Third Reference Catalogue of Bright Galaxies (RC3). A friends-of-friends algorithm is extensively tested on mock galaxy lightcones and then implemented on the real data to determine galaxy groups whose members are likely to be physically and dynamically associated with one another. We find several galaxy groups within the region that are likely bound to one another and in the process of merging. We classify 6 galaxy groups as the Ursa Major ‘supergroup’, which are likely to merge and form a poor cluster with a mass of ~ 8 × 1013 M⊙. Furthermore, the Ursa Major supergroup as a whole is likely bound to the Virgo cluster, which will eventually form an even larger system in the context of hierarchical structure formation. We investigate the evolutionary state of the galaxy groups in the Ursa Major region and conclude that these groups are in an early evolutionary state and the properties of their member galaxies are similar to those in the field.


2014 ◽  
Vol 11 (S308) ◽  
pp. 368-371
Author(s):  
Jukka Nevalainen ◽  
L. J. Liivamägi ◽  
E. Tempel ◽  
E. Branchini ◽  
M. Roncarelli ◽  
...  

AbstractWe have developed a new method to approach the missing baryons problem. We assume that the missing baryons reside in a form of Warm Hot Intergalactic Medium, i.e. the WHIM. Our method consists of (a) detecting the coherent large scale structure in the spatial distribution of galaxies that traces the Cosmic Web and that in hydrodynamical simulations is associated to the WHIM, (b) mapping its luminosity into a galaxy luminosity density field, (c) using numerical simulations to relate the luminosity density to the density of the WHIM, (d) applying this relation to real data to trace the WHIM using the observed galaxy luminosities in the Sloan Digital Sky Survey and 2dF redshift surveys. In our application we find evidence for the WHIM along the line of sight to the Sculptor Wall, at redshifts consistent with the recently reported X-ray absorption line detections. Our indirect WHIM detection technique complements the standard method based on the detection of characteristic X-ray absorption lines, showing that the galaxy luminosity density is a reliable signpost for the WHIM. For this reason, our method could be applied to current galaxy surveys to optimise the observational strategies for detecting and studying the WHIM and its properties. Our estimates of the WHIM hydrogen column density NH in Sculptor agree with those obtained via the X-ray analysis. Due to the additional NH estimate, our method has potential for improving the constrains of the physical parameters of the WHIM as derived with X-ray absorption, and thus for improving the understanding of the missing baryons problem.


2012 ◽  
Vol 10 (H16) ◽  
pp. 324-324
Author(s):  
Karen L. Masters ◽  

AbstractWe use visual classifications of the brightest 250,000 galaxies in the Sloan Digital Sky Survey Main Galaxy Sample provided by citizen scientists via the Galaxy Zoo project (www.galaxyzoo.org, Lintott et al. 2008) to identify a sample of local disc galaxies with reliable bar identifications.These data, combined with information on the atomic gas content from the ALFALFA survey (Haynes et al. 2011) show that disc galaxies with higher gas content have lower bar fractions.We use a gas deficiency parameter to show that disc galaxies with more/less gas than expected for their stellar mass are less/more likely to host bars. Furthermore, we see that at a fixed gas content there is no residual correlation between bar fraction and stellar mass. We argue that this suggests previously observed correlations between galaxy colour/stellar mass and (strong) bar fraction (e.g. from the sample in Masters et al. 2011, and also see Nair & Abraham 2010) could be driven by the interaction between bars and the gas content of the disc, since more massive, optically redder disc galaxies are observed to have lower gas contents.Furthermore we see evidence that at a fixed gas content the global colours of barred galaxies are redder than those of unbarred galaxies. We suggest that this could be due to the exchange of angular momentum beyond co-rotation which might stop a replenishment of gas from external sources, and act as a source of feedback to temporarily halt or reduce the star formation in the outer parts of barred discs.These results (published as Masters et al. 2012) combined with those of Skibba et al. (2012), who use the same sample to show a clear (but subtle and complicated) environmental dependence of the bar fraction in disc galaxies, suggest that bars are intimately linked to the evolution of disc galaxies.


Sign in / Sign up

Export Citation Format

Share Document