number density
Recently Published Documents


TOTAL DOCUMENTS

1785
(FIVE YEARS 367)

H-INDEX

58
(FIVE YEARS 8)

Author(s):  
Fangping Wang ◽  
Heng Zhang ◽  
Sheng Zhang ◽  
Wenshan Duan

Abstract By using the Particle-In-Cell(PIC) simulation method, we study how the proton beam is confined in a bent magnetic mirror. It is found that the loss rate of the charged particles in a bent mirror is less than that in the axi-symmetric mirror. For a special bent mirror with the deflection angle of the coils $\alpha=45^{\circ}$, it is found that the loss rate reaches maximum value at certain ion number density where the ion electrostatic oscillation frequency is equal to the ion cyclotron frequency. In addition, the loss rate is irrelevant to the direction of the proton beam. Our results may be helpful to devise a mirror. In order to obtain the least loss rate, we may choose a appropriate deflection angle, and have to avoid a certain ion number density at which the ion electrostatic oscillation frequency is equal to the ion cyclotron frequency.


2022 ◽  
Author(s):  
Vadim Warshavsky ◽  
Marcelo Marucho

The ability of actins and tubulins to change dynamically from alterations in the number density of actins/tubulin, number density and type of binding agents, and electrolyte concentration is crucial for eukaryotic cells to regulate their cytoskeleton conformations in different cellular compartments. Conventional approaches on biopolymers solution break down for cytoskeleton filaments because they entail several approximations to treat their polyelectrolyte and mechanical properties. In this article, we introduce a novel density functional theory for polydisperse, semiflexible cytoskeleton filaments. The approach accounts for the equilibrium polymerization kinetics, length, and orientation filament distributions, as well as the electrostatic interaction between filaments and the electrolyte. This is essential for cytoskeleton polymerization in different cell compartments generating filaments of different lengths, sometimes long enough to become semiflexible. We characterized the thermodynamics properties of actin filaments in electrolyte aqueous solutions. We calculated the free energy, pressure, chemical potential, and second virial coefficient for each filament conformation. We also calculated the phase diagram of actin filaments solution and compared it with available experimental data.


2022 ◽  
Vol 327 ◽  
pp. 207-222
Author(s):  
Jiehua Li ◽  
Xun Zhang ◽  
Johannes Winklhofer ◽  
Stefan Griesebner ◽  
Bernd Oberdorfer ◽  
...  

In order to reduce CO2 emission and energy consumption, more recycled secondary materials have to be used in foundry industry, especially for Al-Si-Mg based alloys for semi-solid processing. In this paper, Al-Si-Mg based alloys with the addition of recycled secondary materials up to 30 % (10, 20, 30 %, respectively) have been produced by semi-solid processing. The solidification microstructure was investigated using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Furthermore, computed tomography (CT) was also used to elucidate the size, size distribution, number density, volume fraction of porosities. It was found that with the addition of the recycled secondary materials up to 30 %, there is no significant effect on the solidification microstructure in terms of the grain size and the shape factor of primary α-Al and the second α-Al. More importantly, the morphology of eutectic Si can be well modified and that of the Fe-containing phase (π-AlSiMgFe) can be tailored. Furthermore, with increasing recycled secondary materials, at least another two important issues should also be highlighted. Firstly, more TiB2 particles were observed, which can be due to the addition of Al-Ti-B grain refiners for the grain refinement of recycled secondary materials. Secondly, a significant interaction between Sr and P was also observed in the recycled secondary materials. The present investigation clearly demonstrates that Al-Si-Mg based alloys with the addition of recycled secondary materials at least up to 30% can be used for semi-solid processing, which may facilitate better sustainability.


Author(s):  
Felix Meixner ◽  
Mohammad Reza Ahmadi ◽  
Christof Sommitsch

AbstractIn the field of power engineering, where materials are subjected to high pressures at elevated temperatures for many decades, creep-resistant steels are put to work. Their service life is still, however, finite, as the many changes in their microstructure can merely be mitigated and not avoided. Creep cavitation is one of those changes and, in many cases, ultimately causes failure by rupture. In this work, a model is proposed to simulate the nucleation and growth of cavities during creep. This exclusively physics-based model uses modified forms of Classical Nucleation Theory and the Onsager Extremum Principle in a newly developed Kampmann–Wagner framework. The model is validated on P23 steel which underwent creep rupture experiments at 600 °C and stresses of 50, 70, 80, 90 and 100 MPa for creep times up to 46000 hours. The model predicts qualitatively the shape and prevalence of cavities at different sites in the microstructure, and quantitatively the number density, size of cavities and their phase fraction contributing to a reduction in density. Finally, we find good agreement between the simulation and the experimental results especially at low stresses and longer creep times.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
K. L. Chai ◽  
Min Min Aung ◽  
I. M. Noor ◽  
H N Lim ◽  
L C Abdullah

AbstractJatropha oil-based polyurethane acylate gel polymer electrolyte was mixed with different concentrations of tetrabutylammonium iodide salt (TBAI). The temperature dependences of ionic conductivity, dielectric modulus and relaxation time were studied in the range of 298 to 393 K. The highest ionic conductivity of (1.88 ± 0.020) × 10–4 Scm−1 at 298 K was achieved when the gel contained 30 wt% of TBAI and 2.06 wt% of I2. Furthermore, the study found that conductivity-temperature dependence followed the Vogel-Tammann Fulcher equation. From that, it could be clearly observed that 30 wt% TBAI indicated the lowest activation energy of 6.947 kJ mol−1. By using the fitting method on the Nyquist plot, the number density, mobility and diffusion coefficient of the charge carrier were determined. The charge properties were analysed using the dielectric permittivity, modulus and dissipation factor. Apart from this, the stoke drag and capacitance were determined.


Plasmonics ◽  
2022 ◽  
Author(s):  
Mária Csete ◽  
András Szenes ◽  
Emese Tóth ◽  
Dávid Vass ◽  
Olivér Fekete ◽  
...  

AbstractPlasmonic nanoresonators of core–shell composition and nanorod shape were optimized to tune their absorption cross-section maximum to the central wavelength of a short laser pulse. The number density distribution of randomly located nanoresonators along a laser pulse-length scaled target was numerically optimized to maximize the absorptance with the criterion of minimal absorption difference between neighboring layers illuminated by two counter-propagating laser pulses. Wide Gaussian number density distribution of core–shell nanoparticles and nanorods enabled to improve the absorptance with low standard deviation; however, the energy deposited until the overlap of the two laser pulses exhibited a considerable standard deviation. Successive adjustment resulted in narrower Gaussian number density distributions that made it possible to ensure almost uniform distribution of the deposited energy integrated until the maximal overlap of the two laser pulses. While for core–shell nanoparticles the standard deviation of absorptance could be preserved, for the nanorods it was compromised. Considering the larger and polarization independent absorption cross-section as well as the simultaneously achievable smaller standard deviation of absorptance and deposited energy distribution, the core–shell nanoparticles outperform the nanorods both in optimized and adjusted nanoresonator distributions. Exception is the standard deviation of deposited energy distribution considered for the complete layers that is smaller in the adjusted nanorod distribution. Optimization of both nanoresonator distributions has potential applications, where efficient and uniform energy deposition is crucial, including biomedical applications, phase transitions, and even fusion.


Nature ◽  
2022 ◽  
Vol 601 (7891) ◽  
pp. 49-52
Author(s):  
T.-C. Ching ◽  
D. Li ◽  
C. Heiles ◽  
Z.-Y. Li ◽  
L. Qian ◽  
...  

AbstractMagnetic fields have an important role in the evolution of interstellar medium and star formation1,2. As the only direct probe of interstellar field strength, credible Zeeman measurements remain sparse owing to the lack of suitable Zeeman probes, particularly for cold, molecular gas3. Here we report the detection of a magnetic field of +3.8 ± 0.3 microgauss through the H I narrow self-absorption (HINSA)4,5 towards L15446,7—a well-studied prototypical prestellar core in an early transition between starless and protostellar phases8–10 characterized by a high central number density11 and a low central temperature12. A combined analysis of the Zeeman measurements of quasar H I absorption, H I emission, OH emission and HINSA reveals a coherent magnetic field from the atomic cold neutral medium (CNM) to the molecular envelope. The molecular envelope traced by the HINSA is found to be magnetically supercritical, with a field strength comparable to that of the surrounding diffuse, magnetically subcritical CNM despite a large increase in density. The reduction of the magnetic flux relative to the mass, which is necessary for star formation, thus seems to have already happened during the transition from the diffuse CNM to the molecular gas traced by the HINSA. This is earlier than envisioned in the classical picture where magnetically supercritical cores capable of collapsing into stars form out of magnetically subcritical envelopes13,14.


2022 ◽  
Vol 924 (2) ◽  
pp. 93
Author(s):  
J. Andrew Casey-Clyde ◽  
Chiara M. F. Mingarelli ◽  
Jenny E. Greene ◽  
Kris Pardo ◽  
Morgan Nañez ◽  
...  

Abstract The nanohertz gravitational wave background (GWB) is believed to be dominated by GW emission from supermassive black hole binaries (SMBHBs). Observations of several dual-active galactic nuclei (AGN) strongly suggest a link between AGN and SMBHBs, given that these dual-AGN systems will eventually form bound binary pairs. Here we develop an exploratory SMBHB population model based on empirically constrained quasar populations, allowing us to decompose the GWB amplitude into an underlying distribution of SMBH masses, SMBHB number density, and volume enclosing the GWB. Our approach also allows us to self-consistently predict the number of local SMBHB systems from the GWB amplitude. Interestingly, we find the local number density of SMBHBs implied by the common-process signal in the NANOGrav 12.5-yr data set to be roughly five times larger than previously predicted by other models. We also find that at most ∼25% of SMBHBs can be associated with quasars. Furthermore, our quasar-based approach predicts ≳95% of the GWB signal comes from z ≲ 2.5, and that SMBHBs contributing to the GWB have masses ≳108 M ⊙. We also explore how different empirical galaxy–black hole scaling relations affect the local number density of GW sources, and find that relations predicting more massive black holes decrease the local number density of SMBHBs. Overall, our results point to the important role that a measurement of the GWB will play in directly constraining the cosmic population of SMBHBs, as well as their connections to quasars and galaxy mergers.


2021 ◽  
pp. 4694-4701
Author(s):  
Qusay Adnan Abbas

      The present work investigated the effect of distance from target surface on the parameters of lead plasma excited by 1064nm Q-switched Nd:YAG laser. The excitation was conducted in air, at atmospheric pressure, with pulse length of 5 ns, and at different pulse laser energies. Electron temperature was calculated by Boltzmann plot method based on the PbI emission spectral lines (369.03 nm, 416.98 nm, 523.48, and 561.94 nm). The PbI lines were recorded at different distances from the target surface at laser pulse energies of 260 and 280 mJ. The emission intensity of plasma increased with increasing the lens-to-target distance. The results also detected an increase in electron temperature with increasing the distance between the focal lens and the surface of the target in all laser energies under study. In addition, the electron number density was determined by using the Stark broadening method. The data illustrated that the electron number density was increased with increasing the distance from target surface, reaching the maximum at a distance of 11 cm for all pulse laser energy levels under study.


Sign in / Sign up

Export Citation Format

Share Document