scholarly journals High Angular Resolution and Young Stellar Objects: Imaging the Surroundings of MWC 158 by Optical Interferometry

Author(s):  
J. Kluska ◽  
F. Malbet ◽  
J.-P. Berger ◽  
M. Benisty ◽  
B. Lazareff ◽  
...  
2013 ◽  
Vol 59 ◽  
pp. 141-154
Author(s):  
J. Kluska ◽  
F. Malbet ◽  
J.-P. Berger ◽  
M. Benisty ◽  
B. Lazareff ◽  
...  

2002 ◽  
Vol 206 ◽  
pp. 27-34
Author(s):  
Mark J. Claussen

I present a review of observations of water masers, in particular very high angular resolution of water masers using Very Long Baseline Interferometry, with which it is possible to probe the environment of young stellar objects and forming stars within only a few A.U. of the protostar, its accretion disk, and therefore the base of outflowing material. Although reference is made to some high-luminosity sources, the main thrust of the review are the water masers found toward forming objects whose mass and luminosity will be approximately that of the Sun when they reach the main sequence.


1994 ◽  
Vol 158 ◽  
pp. 387-390
Author(s):  
J.-L. Monin ◽  
J. Bouvier ◽  
F. Malbet

The existence of circumstellar disks around young stellar objects like T Tauri stars is now well accepted. Such disks would have solar system sizes and, at the distance of the nearest star forming cloud, an angular diameter of 0.01 to 1 arcsecond at most, requiring very high angular resolution to be detected. Due to the nature of the emission process in circumstellar disks and to chromatic properties of ground based observations, disk imaging is expected to be more efficient in the near infrared. Also, multi-aperture interferometry in this wavelength range (1 – 10 μm) is expected to bring considerable insight into the disks properties and evolution in revealing their inner physical structure.In this paper, we present synthetic images of circumstellar accretion disks. The images have been computed from a complete disk vertical structure model.


2001 ◽  
Vol 205 ◽  
pp. 256-257
Author(s):  
Kevin B. Marvel ◽  
Mark Claussen ◽  
H. Alwyn Wootten ◽  
Bruce Wilking

With the advent of new correlators and dedicated arrays, spectral line VLBI is entering its ascendancy as a probe of a variety of interesting astrophysical environments. One of the most interesting environments where spectroscopic VLBI techniques are valuable are the regions directly coincident with forming stars. In these sources, water maser emission is observed when the outflowing jets of material interact with the surrounding medium. Observations of these water masers dramatically reveal the innermost regions of the star formation process at or below the 1-AU scale.We have found that the water masers clearly trace the jets at these scales. The masers show space motions on the order of 60 to 100 kms−1 and form within a few AU of the exciting protostar. By observing the distributions and motions of the water masers associated with these objects, we may be able to address in greater detail the collimation mechanism of the jets seen in these protostars.In this brief poster proceeding, we provide a summary image of the water masers associated with SVS13, the driving source for the HH 7-11 objects. We have also mapped the masers associated with IRAS 16293-2422, IRAS 05413-0104, IRAS 4A and IRAS 4B, both in the NGC 1333 star forming region. For further information on these sources, please contact any of the authors directly.


1997 ◽  
Vol 178 ◽  
pp. 31-44 ◽  
Author(s):  
Geoffrey A. Blake

Recent advances in the observational characterization of young stellar objects (YSOs) with millimeter-wave aperture synthesis arrays and (sub)millimeter single dish telescopes are reviewed. Studies of circumstellar material with ∼arc second resolution, which have only become possible at these frequencies within the past few years and which can potentially probe all stages of the star formation process, are emphasized. Molecules that are sensitive to different routes of formation and modification are outlined, including comments about their utility in distinguishing between a variety of environments and histories in star-forming cloud cores.


2004 ◽  
Vol 221 ◽  
pp. 351-358
Author(s):  
Hsien Shang

We have constructed the foundations to a series of diagnostics methods to probe the jet phenomena in young stars as observed at various optical forbidden lines and radio wavelengths. We calculate and model in a self-consistent manner the physical and radiative processes, which arise within an inner disk-wind driven magnetocentrifugally from the circumstellar accretion disk of a sun-like star. Comparing with real data taken at high angular resolution, our approach will provide the basis of systematic diagnostics for jets and their related young stellar objects, to attest the emission mechanisms of such phenomena. Such approach can help bring first-principle theoretical predictions to confront actual multi-wavelength observations, and will bridge the link between complex numerical simulations and observational data. Analysis methods discussed here are immediately applicable to new high-resolution data obtained with HST, Adaptic Optics, and radio interferometry.


2019 ◽  
Vol 621 ◽  
pp. A140 ◽  
Author(s):  
Carmen Juárez ◽  
Hauyu Baobab Liu ◽  
Josep M. Girart ◽  
Aina Palau ◽  
Gemma Busquet ◽  
...  

Aims. The filamentary ~10-pc-scale infrared dark cloud L1287 located at a parallax distance of ~929 pc is actively forming a dense cluster of low-mass young stellar objects (YSOs) at its inner ~0.1 pc region. To help understand the origin of this low-mass YSO cluster, the present work aims at resolving the gas structures and kinematics with high angular resolution. Methods. We performed ~1′′ angular resolution (~930 AU) observations at ~1.3 mm wavelengths using the Submillimeter Array (SMA), which simultaneously cover the dust continuum emission and various molecular line tracers for dense gas, warm gas, shocks, and outflows. Results. From a 1.3-mm continuum image with a resolution of ~2′′ we identified six dense cores, namely SMA1-6. Their gas masses are in the range of ~0.4–4 M⊙. From a 1.3-mm continuum image with a resolution of ~1′′, we find a high fragmentation level, with 14 compact millimeter sources within 0.1 pc: SMA3 contains at least nine internal condensations; SMA5 and SMA6 are also resolved with two internal condensations. Intriguingly, one condensation in SMA3 and another in SMA5 appear associated with the known accretion outburst YSOs RNO 1C and RNO 1B. The dense gas tracer DCN (3–2) well traces the dust continuum emission and shows a clear velocity gradient along the NW-SE direction centered at SMA3. There is another velocity gradient with opposite direction around the most luminous YSO, IRAS 00338 + 6312. Conclusions. The fragmentation within 0.1 pc in L1287 is very high compared to other regions at the same spatial scales. The incoherent motions of dense gas flows are sometimes interpreted by being influenced by (proto)stellar feedback (e.g., outflows), which is not yet ruled out in this particular target source. On the other hand, the velocities (with respect to the systemic velocity) traced by DCN are small, and the directions of the velocity gradients traced by DCN are approximately perpendicular to those of the dominant CO outflow(s). Therefore, we alternatively hypothesize that the velocity gradients revealed by DCN trace the convergence from the ≳0.1 pc scales infalling motion towards the rotational motions around the more compact (~0.02 pc) sources. This global molecular gas converging flow may feed the formation of the dense low-mass YSO cluster. Finally, we also found that IRAS 00338 + 6312 is the most likely powering source of the dominant CO outflow. A compact blue-shifted outflow from RNO 1C is also identified.


Sign in / Sign up

Export Citation Format

Share Document