scholarly journals Some isoperimetric inequalities with respect to monomial weights

Author(s):  
Angelo Alvino ◽  
Friedemann Brock ◽  
Francesco Chiacchio ◽  
Anna Mercaldo ◽  
Maria Rosaria Posteraro

We solve a class of isoperimetric problems on $\mathbb{R}^2_+ $ with respect to monomial weights. Let $\alpha $ and $\beta $ be real numbers such that $0\le \alpha <\beta+1$, $\beta\le 2 \alpha$. We show that,  among all smooth sets $\Omega$ in $\mathbb{R} ^2_+$ with fixed weighted measure $\iint_{\Omega } y^{\beta} dxdy$, the weighted perimeter $\int_{\partial \Omega } y^\alpha \, ds$ achieves its minimum for a smooth set which is symmetric w.r.t. to the $y$--axis, and is explicitly given. Our results also imply an estimate of a weighted Cheeger constant and a  bound for eigenvalues of some nonlinear problems.

Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3593-3597
Author(s):  
Ravindra Bisht

Combining the approaches of functionals associated with h-concave functions and fixed point techniques, we study the existence and uniqueness of a solution for a class of nonlinear integral equation: x(t) = g1(t)-g2(t) + ? ?t,0 V1(t,s)h1(s,x(s))ds + ? ?T,0 V2(t,s)h2(s,x(s))ds; where C([0,T];R) denotes the space of all continuous functions on [0,T] equipped with the uniform metric and t?[0,T], ?,? are real numbers, g1, g2 ? C([0, T],R) and V1(t,s), V2(t,s), h1(t,s), h2(t,s) are continuous real-valued functions in [0,T]xR.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3507-3517
Author(s):  
Abhijit Pant ◽  
R.P. Pant ◽  
Kuldeep Prakash

The aim of the present paper is to study the dynamics of a class of orbitally continuous non-linear mappings defined on the set of real numbers and to apply the results on dynamics of functions to obtain tests of divisibility. We show that this class of mappings contains chaotic mappings. We also draw Julia sets of certain iterations related to multiple lowering mappings and employ the variations in the complexity of Julia sets to illustrate the results on the quotient and remainder. The notion of orbital continuity was introduced by Lj. B. Ciric and is an important tool in establishing existence of fixed points.


Filomat ◽  
2017 ◽  
Vol 31 (19) ◽  
pp. 5945-5953 ◽  
Author(s):  
İmdat İsçan ◽  
Sercan Turhan ◽  
Selahattin Maden

In this paper, we give a new concept which is a generalization of the concepts quasi-convexity and harmonically quasi-convexity and establish a new identity. A consequence of the identity is that we obtain some new general inequalities containing all of the Hermite-Hadamard and Simpson-like type for functions whose derivatives in absolute value at certain power are p-quasi-convex. Some applications to special means of real numbers are also given.


Author(s):  
Po Ting Lin ◽  
Wei-Hao Lu ◽  
Shu-Ping Lin

In the past few years, researchers have begun to investigate the existence of arbitrary uncertainties in the design optimization problems. Most traditional reliability-based design optimization (RBDO) methods transform the design space to the standard normal space for reliability analysis but may not work well when the random variables are arbitrarily distributed. It is because that the transformation to the standard normal space cannot be determined or the distribution type is unknown. The methods of Ensemble of Gaussian-based Reliability Analyses (EoGRA) and Ensemble of Gradient-based Transformed Reliability Analyses (EGTRA) have been developed to estimate the joint probability density function using the ensemble of kernel functions. EoGRA performs a series of Gaussian-based kernel reliability analyses and merged them together to compute the reliability of the design point. EGTRA transforms the design space to the single-variate design space toward the constraint gradient, where the kernel reliability analyses become much less costly. In this paper, a series of comprehensive investigations were performed to study the similarities and differences between EoGRA and EGTRA. The results showed that EGTRA performs accurate and effective reliability analyses for both linear and nonlinear problems. When the constraints are highly nonlinear, EGTRA may have little problem but still can be effective in terms of starting from deterministic optimal points. On the other hands, the sensitivity analyses of EoGRA may be ineffective when the random distribution is completely inside the feasible space or infeasible space. However, EoGRA can find acceptable design points when starting from deterministic optimal points. Moreover, EoGRA is capable of delivering estimated failure probability of each constraint during the optimization processes, which may be convenient for some applications.


1969 ◽  
Vol 6 (03) ◽  
pp. 478-492 ◽  
Author(s):  
William E. Wilkinson

Consider a discrete time Markov chain {Zn } whose state space is the non-negative integers and whose transition probability matrix ║Pij ║ possesses the representation where {Pr }, r = 1,2,…, is a finite or denumerably infinite sequence of non-negative real numbers satisfying , and , is a corresponding sequence of probability generating functions. It is assumed that Z 0 = k, a finite positive integer.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Keitaro Ohno ◽  
Yusaku Ohta ◽  
Satoshi Kawamoto ◽  
Satoshi Abe ◽  
Ryota Hino ◽  
...  

AbstractRapid estimation of the coseismic fault model for medium-to-large-sized earthquakes is key for disaster response. To estimate the coseismic fault model for large earthquakes, the Geospatial Information Authority of Japan and Tohoku University have jointly developed a real-time GEONET analysis system for rapid deformation monitoring (REGARD). REGARD can estimate the single rectangular fault model and slip distribution along the assumed plate interface. The single rectangular fault model is useful as a first-order approximation of a medium-to-large earthquake. However, in its estimation, it is difficult to obtain accurate results for model parameters due to the strong effect of initial values. To solve this problem, this study proposes a new method to estimate the coseismic fault model and model uncertainties in real time based on the Bayesian inversion approach using the Markov Chain Monte Carlo (MCMC) method. The MCMC approach is computationally expensive and hyperparameters should be defined in advance via trial and error. The sampling efficiency was improved using a parallel tempering method, and an automatic definition method for hyperparameters was developed for real-time use. The calculation time was within 30 s for 1 × 106 samples using a typical single LINUX server, which can implement real-time analysis, similar to REGARD. The reliability of the developed method was evaluated using data from recent earthquakes (2016 Kumamoto and 2019 Yamagata-Oki earthquakes). Simulations of the earthquakes in the Sea of Japan were also conducted exhaustively. The results showed an advantage over the maximum likelihood approach with a priori information, which has initial value dependence in nonlinear problems. In terms of application to data with a small signal-to-noise ratio, the results suggest the possibility of using several conjugate fault models. There is a tradeoff between the fault area and slip amount, especially for offshore earthquakes, which means that quantification of the uncertainty enables us to evaluate the reliability of the fault model estimation results in real time.


Sign in / Sign up

Export Citation Format

Share Document