fixed point techniques
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 20)

H-INDEX

8
(FIVE YEARS 3)

2021 ◽  
pp. 1-21
Author(s):  
Rashwan A. Rashwan ◽  
Hasanen A. Hammad ◽  
A. Nafea

In this manuscript, the concept of a cyclic tripled type fuzzy cone contraction mapping in the setting of fuzzy cone metric spaces is introduced. Also, some theoretical results concerned with tripled fixed points are given without a mixed monotone property in the mentioned space. Moreover, under this concept, some strong tripled fixed point results are obtained. Ultimately, to support the theoretical results non-trivial examples are listed and the existence of a unique solution to a system of integral equations is presented as an application.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3063
Author(s):  
Kandhasamy Tamilvanan ◽  
Abdulaziz Mohammed Alanazi ◽  
John Michael Rassias ◽  
Ali H. Alkhaldi

In this paper, we use direct and fixed-point techniques to examine the generalised Ulam–Hyers stability results of the general Euler–Lagrange quadratic mapping in non-Archimedean IFN spaces (briefly, non-Archimedean Intuitionistic Fuzzy Normed spaces) over a field.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mohammad Esmael Samei ◽  
Mohammed M. Matar ◽  
Sina Etemad ◽  
Shahram Rezapour

AbstractThis research is conducted for studying some qualitative specifications of solution to a generalized fractional structure of the standard snap boundary problem. We first rewrite the mathematical model of the extended fractional snap problem by means of the $\mathbb{G}$ G -operators. After finding its equivalent solution as a form of the integral equation, we establish the existence criterion of this reformulated model with respect to some known fixed point techniques. Then we analyze its stability and further investigate the inclusion version of the problem with the help of some special contractions. We present numerical simulations for solutions of several examples regarding the fractional $\mathbb{G}$ G -snap system in different structures including the Caputo, Caputo–Hadamard, and Katugampola operators of different orders.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
M. Mohan Raja ◽  
Velusamy Vijayakumar ◽  
Anurag Shukla ◽  
Kottakkaran Sooppy Nisar ◽  
Shahram Rezapour

AbstractIn this manuscript, we deal with the nonlocal controllability results for the fractional evolution system of $1< r<2$ 1 < r < 2 in a Banach space. The main results of this article are tested by using fractional calculations, the measure of noncompactness, cosine families, Mainardi’s Wright-type function, and fixed point techniques. First, we investigate the controllability results of a mild solution for the fractional evolution system with nonlocal conditions using the Mönch fixed point theorem. Furthermore, we develop the nonlocal controllability results for fractional integrodifferential evolution system by applying the Banach fixed point theorem. Finally, an application is presented for drawing the theory of the main results.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2684
Author(s):  
Rahul Shukla ◽  
Rajendra Pant ◽  
Hemant Kumar Nashine ◽  
Manuel De la De la Sen

The principal goal of this work is to investigate new sufficient conditions for the existence and convergence of positive definite solutions to certain classes of matrix equations. Under specific assumptions, the basic tool in our study is a monotone mapping, which admits a unique fixed point in the setting of a partially ordered Banach space. To estimate solutions to these matrix equations, we use the Krasnosel’skiĭ iterative technique. We also discuss some useful examples to illustrate our results.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2575
Author(s):  
Kandhasamy Tamilvanan ◽  
Abdulaziz M. Alanazi ◽  
Maryam Gharamah Alshehri ◽  
Jeevan Kafle

In this paper, the authors investigate the Hyers–Ulam stability results of the quadratic functional equation in Banach spaces and non-Archimedean Banach spaces by utilizing two different techniques in terms of direct and fixed point techniques.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2298
Author(s):  
Mohammed K. A. Kaabar ◽  
Mehdi Shabibi ◽  
Jehad Alzabut ◽  
Sina Etemad ◽  
Weerawat Sudsutad ◽  
...  

Our main purpose in this paper is to prove the existence of solutions for the fractional strongly singular thermostat model under some generalized boundary conditions. In this way, we use some recent nonlinear fixed-point techniques involving α-ψ-contractions and α-admissible maps. Further, we establish the similar results for the hybrid version of the given fractional strongly singular thermostat control model. Some examples are studied to illustrate the consistency of our results.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 2012
Author(s):  
Hasanen A. Hammad ◽  
Praveen Agarwal ◽  
Juan L. G. Guirao

In this manuscript, some tripled fixed point results were derived under (φ,ρ,ℓ)-contraction in the framework of ordered partially metric spaces. Moreover, we furnish an example which supports our theorem. Furthermore, some results about a homotopy results are obtained. Finally, theoretical results are involved in some applications, such as finding the unique solution to the boundary value problems and homotopy theory.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 120
Author(s):  
Sang Og Kim ◽  
Kandhasamy Tamilvanan

In the present paper, we introduce a new type of quartic functional equation and examine the Hyers–Ulam stability in fuzzy normed spaces by employing the direct method and fixed point techniques. We provide some applications in which the stability of this quartic functional equation can be controlled by sums and products of powers of norms. In particular, we show that if the control function is the fuzzy norm of the product of powers of norms, the quartic functional equation is hyperstable.


Sign in / Sign up

Export Citation Format

Share Document