scholarly journals Research on Damage Identification of Grid Structure Based on Genetic Algorithm

2019 ◽  
Vol 136 ◽  
pp. 03014
Author(s):  
Yu Wang ◽  
Menghong Wang ◽  
Huan Lu

This paper proposes a genetic algorithm based damage identification method for grid structures. The genetic algorithm is used to process the modal information of the structure, and the damage identification of the truss structure is carried out. The stiffness reduction factor of the structural member is used as the optimization variable. The objective function is constructed according to the frequency and vibration mode, and the fitness function is established. The binary coding method is used to improve the crossover and mutation operators. In this paper, a grid structure model is used for numerical simulation analysis and verified by experiments. In the experimental stage, the grid structure is excited by hammering method, and the response data of each node and the modal information of the structure are obtained. Numerical simulation and experimental analysis show that the damage identification method based on genetic algorithm can effectively judge the location and extent of damage.

2010 ◽  
Vol 163-167 ◽  
pp. 2765-2769 ◽  
Author(s):  
Wan Jie Zou ◽  
Zhen Luo ◽  
Guo En Zhou

A combined method for the Benchmark structure damage identification base on the frequency response function(FRF) and genetic algorithm(GA) is presented. The reducing factors of element stiffness are used as the optimization variables, and the cross signature assurance criterion (CSAC) of the test FRF and the analysis FRF is used to constructing the optimization object function and the fitness function of the GA. To avoid the weakness of binary encoding, the floating point number encoding is used in the GA. At last, the Benchmark structure established by IASC-ASCE SHM group is caculated by the proposed method, the results show that even if the serious testing noise is considered, the patterns of damage of the Benchmark structure can be identified well. The effectiveness of the presented method is verified.


2014 ◽  
Vol 578-579 ◽  
pp. 1032-1036
Author(s):  
Yong Qin

Starting with damage identification index method on the basis of the curvature mode, the first-order curvature mode ratio is proposed, and then it is made a numerical simulation analysis for a single span simple beam bridge with ANSYS. The identification of structure damage degree under the damage on the single position is studied. The fitted polynomial based on the derivation of the first-order curvature mode ratio can estimate the damage degree; it has a good reference value for the damage detection of structures in practical engineering.


2013 ◽  
Vol 347-350 ◽  
pp. 107-110
Author(s):  
Sen Wu ◽  
Bin Wang ◽  
Hai Hua Zhang

In view of the defects of the traditional damage identification method based on vibration,the damage identification method based on vibration transmissibility is put forward. The feasibility of the vibration transmissibility applied to structural damage identification is analyzed by the numerical simulation experiment of a cantilever beam, the analysis results show that, vibration transmissibility contains the structure damage severity, damage location and other useful information, and all the information is favor of the damage identification.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

The Casse-tête board puzzle consists of an n×n grid covered with n^2 tokens. m<n^2 tokens are deleted from the grid so that each row and column of the grid contains an even number of remaining tokens. The size of the search space is exponential. This study used a genetic algorithm (GA) to design and implement solutions for the board puzzle. The chromosome representation is a matrix of binary permutations. Variants for two crossover operators and two mutation operators were presented. The study experimented with and compared four possible operator combinations. Additionally, it compared GA and simulated annealing (SA)-based solutions, finding a 100% success rate (SR) for both. However, the GA-based model was more effective in solving larger instances of the puzzle than the SA-based model. The GA-based model was found to be considerably more efficient than the SA-based model when measured by the number of fitness function evaluations (FEs). The Wilcoxon signed-rank test confirms a significant difference among FEs in the two models (p=0.038).


2012 ◽  
Vol 166-169 ◽  
pp. 1484-1488
Author(s):  
Feng Li ◽  
Ju Lin Wang

Based on the easy testability and high measure precision of structural frequency, a damage identification method for shear buildings is presented. With frequency being regarded as the function of damage parameters, the linear equations with damage parameters as unknowns can be constructed via Taylor expansion. The equations are solved to locate the whole damage location and quantify the severity of the damage. Furthermore, the iteration-self modification is proposed to improve the accuracy of damage identification greatly. The data used in the method include frequency before and after damage. A numerical simulation example using a three-storey sheer structure is given to validate the present method.


2021 ◽  
Author(s):  
Diplina Paul ◽  
Abhisek Banerjee

Abstract In this article, authors have studied genetic algorithm-based optimization technique to optimize rotor profile for elliptic shaped Savonius-style wind turbine with an aim to maximize the coefficient of performance. Genetic algorithm has been used to optimize design variables having distinct values and discontinuous and nondifferentiable objective functions. Optimization procedure using genetic algorithm uses the following steps: initialization, assessment, assortment, crossover and lastly alteration. Once the genetic algorithm is initialized, then the evaluation process trails, where each parametric value is evaluated based on the fitness function stated as objective function. Then the GA operators i.e assortment, cross over and alteration are applied. At the end of GA operation procedure, a new set of values of design parameter is generated. This procedure is endlessly iterated until the convergence criteria is met. Then the optimized and non-optimized profiles are studied using numerical simulation. Initially a two-dimensional numerical model is developed and validated against experimental results. The two-dimensional analysis is conducted using k-ω shear stress transport model. Unsteady Reynold’s Averaged Navier Stoke’s equations have been solved to simulate the flow field of a Savonius-style rotor. This analysis has been executed using finite volume approach in Fluent 17.2 version. Grid independence study is performed to curtail the effect of grid size on the flow field portrayals. The optimization technique implemented on the Savonius-style wind turbine, generated design parameters that were able to yield a coefficient of performance value of 0.398. The coefficient of torque and coefficient of performance values are studied for both optimized and non-optimized profile as a function of tip speed ratio. Numerical simulation predicted a maximum gain of 41% for coefficient of performance at TSR = 1.0 over for optimized profile over the non-optimized profile.


2020 ◽  
Vol 17 (2) ◽  
pp. 172988142090592
Author(s):  
Yang Zhao ◽  
Yifei Chen ◽  
Ziyang Zhen ◽  
Ju Jiang

The multi-weapon multi-target assignment is always an unavoidable problem in military field. It does make sense to find a proper assignment of weapons to targets which may help maximize the attack effect. In this article, as the information achieved from the battlefield is becoming more and more uncertain, a novel threat assessment method and target assignment algorithm are proposed against the background of unmanned aerial vehicles intelligent air combat. Specifically, with regard to the threat assessment issue, a possibility degree function based on grey theory is structured to further improve the grey analytic hierarchy process. It can transform the interval weight of threat factors into scalar-valued weight, with which the accuracy of threat assessment can be improved. Regarding the target assignment problem, combining with interval grey number, an improved hybrid genetic algorithm is developed. The improvements are mainly consisting of adaptive crossover and mutation operators which can help to find an approximate solution within certain time constraints. Meanwhile, the simulated annealing operation is incorporated to avoid local optimum and premature phenomenon. In addition, the selection operation and fitness function are also redesigned to handle the interval numbers. Simulation results demonstrate the effectiveness of our algorithm in completing the multi-objective weapon-target assignment under uncertain environment.


Sign in / Sign up

Export Citation Format

Share Document