scholarly journals Mechanical Behaviour of Reinforced Sand with Natural Curauá Fibers through Full Scale Direct Shear Tests

2019 ◽  
Vol 92 ◽  
pp. 12003
Author(s):  
Leila Maria Coelho de Carvalho ◽  
Michelé Dal Toé Casagrande

Inclusion of natural fibers (sisal, curauá, coco fiber and others) for soil improvement has been the study object in diverse geotechnical areas and it is a topic of growing interest, within the research area of new geotechnical materials. The state of the art in this subject highlights excellent results as soil strength parameters improve and post-cracking strength (toughness) increase. Soil reinforcement technique with fibers is established in the technology of composite materials, this being a combination of two or more materials presenting properties that the component materials do not possess on their own. The aim of this paper is to study the mechanical behaviour of sand-fiber composite by inserting natural curauá fibers into a sandy matrix, with different fiber contents. The fibers were randomly distributed in the soil mass. The experimental program included physical and mechanical characterization of the composites, using full-scale direct shear tests, with samples measuring 30 x 30 cm and 15 cm high. Direct shear tests were carried out using fibers with 25 mm length and 0.5 and 0.75% fiber content (relative to the soil dry weight). The specimens also presented a relative density of 50% and moisture content of 10%. It was sought to establish a pattern behaviour so that the addition of curauá fiber influence can be explained, thus, comparing with the sandy soil shear strength parameters. Inclusion of natural curauá fibers as soil reinforcement presented satisfactory results, as an increase in the soil shear strength parameters was observed when compared with sandy soil results.

Author(s):  
Khaled Zahran ◽  
Hany El Naggar

Tire-derived aggregate (TDA), a relatively new construction material, has been gaining acceptance as a backfill material for embankments, trenches, and earth-retaining structures because of its lightweight and excellent geotechnical properties. Type A TDA has a basic geometric shape, with particles approximately 12 to 100 mm in size. As a result of the simplicity and accuracy of the direct shear test, most laboratories choose this test in preference to more complex tests. However, TDA requires large-scale direct shear apparatus because of the consistently large size of its particles, and few facilities own this type of apparatus. Depending on the shear box dimensions, the aspect ratio of the particle size to the box dimensions may lead to variations in the shear strength results of the sample being evaluated. This research focuses on studying the effect of TDA sample size on the shear strength results of direct shear tests by using five different shear box sizes. The findings show that the angle of internal friction increases slightly as the dimensions of the shear box decrease. It was found that the maximum variation in the angle of internal friction and the cohesion results of the different shear boxes was only 1.9° and 2.4 kPa, respectively. These differences should be taken into consideration when TDA shear test results are used in the geotechnical design. It is recommended that a shear box with an aspect ratio (W/Dmax) greater than or equal to 4 should be used when evaluating the shear strength parameters of TDA.


2018 ◽  
Vol 20 (2) ◽  
pp. 91 ◽  
Author(s):  
Heriansyah Putra ◽  
Hideaki Yasuhara ◽  
Naoki Kinoshita ◽  
Erizal . ◽  
Tri Sudibyo

Several methods have been established for their various potential applications as soil improvement technique, and recently the application of grouting technique using biological process have been proposed. This study discussed the applicability of enzyme-mediated calcite precipitation (EMCP) in improving the shear strength parameters of sandy soil.  In this study, soil specimens were prepared and treated with the grouting solutions composed of urea, calcium chloride, magnesium sulfate and enzyme of urease. Evolutions in the cohesion and internal friction angle of the improved soil were examined through the direct shear tests. The presence of the precipitated materials, comprising 4.1 percent of the soil mass of the treated sand, generated a cohesion of 53 kPa. However, contrary to the improvement of cohesion, the friction angle is relatively constant. It indicated that the application of the EMCP technique has no significant impact on the friction angle


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1179
Author(s):  
Giang Nguyen ◽  
Joanna Grzybowska-Pietras ◽  
Jan Broda

Using materials from recycling is a key part of decreasing present-day waste. It is optimal for recycled material to be used in environmental protection. This paper presents the application of geotextile ropes in erosion protection of a slope of a gravel pit. To protect the slope, thick ropes with a diameter of 120 mm made from wool and a mixture of recycled natural and synthetic fibers were used. After 47 months from installation, soil and rope specimens were taken from the slope parts with inclinations 1:1 and 1:1.8, and their physical and mechanical properties were determined. Direct shear tests were applied to determine the soil shear strength parameters in state at sampling and at Ic = 0 (unconsolidated and consolidated). Based on the obtained soil shear strength parameters, the loads on the ropes were determined, taking into account also unfavorable hydraulic conditions and compared to rope strength. It was shown that even after 47 months from installation, rope tension strength was higher as tension forces were induced in the ropes in every case. At present, whole slopes in protected sections are stabilized, without rills and gullies.


2019 ◽  
Vol 5 (5) ◽  
pp. 1147-1161
Author(s):  
Roaa M. Fadhil ◽  
Haifaa A. Ali

The present paper aims to improve shear strength parameters: cohesion (c), and angle of internal friction (∅) for sandy soil treated by additives before and after soaking. The samples of sandy soil were obtained from Karbala city and then classified as poorly graded sand (SP) with relative density Dr (30%) according to the system of (USCS). The experiment has three stages. In the first stage ,the soil was treated with three different  percentages of cement (3 ,5 and 7%) of dry weight for the soil with three different percentages of water content (2, 4 and 8%) in each above percentage of cement, while the second stage includes (2%) of lime  from  soil weight  mixed with each different percentage of cement . In the third stage, (50%) of polymer of cement weight was mixed with each different percentage of cement. An analysis of behavior sandy soils treated by additives was carried out with the Direct Shear Tests. All the samples were cured (3) days before and after soaking. The results of the experiment showed that increase in shear strength parameters of sandy soil; especially the angle of internal friction with the rate value (16.6 %) of cement only, (21.88 %) of cement with lime , (20.3%) of cement with the polymer before soaked condition. After soaking condition, it was increased with the rate value (14.3%) with cement only, (23.57%) of cement with lime, and (15.38%) of cement with the polymer as compared with soil in the natural state.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Yanhai Wang ◽  
Jianlin Li ◽  
Qiao Jiang ◽  
Yisheng Huang ◽  
Xinzhe Li

Under the action of rainwater seepage, geological origin, and human activities, the soil shear strength parameters will have spatial variability along the slope direction. After collecting samples of silty clay at a slope in the Three Gorges Reservoir area as the research object, not only the large-scale direct shear test was carried out on the site but also the direct shear test, water content test, density test, and particle grading analysis test were carried out in the laboratory with the undisturbed soil. The variation law and mechanism of soil shear strength parameters along slope were studied. The results indicate the following: (1) The coefficient of variation of shear strength parameters along the slope is relatively large. With the decrease of the elevation of the test location, the cohesion value tends to be strengthened, while the friction angle tends to degrade. (2) The mechanism of the variation law of soil shear strength parameters along the slope, which is mainly due to the decrease of the elevation, the decrease of the edges and angles between the particles, and the increase of the clay content is determined. (3) The variation model of shear strength parameters along the slope is proposed, which can provide a reference for relevant projects.


2013 ◽  
Vol 709 ◽  
pp. 579-582
Author(s):  
Meng Hua Fan

It is difficult to determine the Mohr-Coulomb failure envelope visually, and it is strongly influenced by abnormal test data evaluating the shear strength parameters of soil via trend line and unable to adjust the scope of permissible error. So it is recommended to evaluate shear strength parameters of soil using Solver of Excel for direct shear tests and triaxial tests and you can control the allowable deviation. The mathematics model of nonlinear programming was established to evaluate shear strength parameters of soil from the results of direct shear test and triaxial shear test. The related Excel worksheet was created and the optimum results of the objective function were obtained by setting the Solver parameters dialog box accurately. The method is simple, inexpensive and rapid.


2015 ◽  
Vol 10 (Special-Issue1) ◽  
pp. 120-130 ◽  
Author(s):  
Marjan Sadrjamali ◽  
Seyed Athar ◽  
Alireza Negahdar

Mechanical and chemical processes and/or reinforcing materials are used in order to increase soil shear strength. Necessity for reinforcing and strengthening of soil in geotechnical and civil engineering projects requires use of new materials and reinforces. In recent years, although researchers have used new chemical compounds, however, nano-particles have not found their suitable situation. In this study, we have tried to increase soil shear strength parameters using different additives. Clay minerals are considered as problematic soils due to their engineering features. So, it is essential to reclaim them. In this research, clay with low plasticity property has been studied. Soil shear strength is an important factor for any analysis associated with stability including slope stability analysis. Slope stability analysis is used in earth dams and trenches. In this study, we have tried to increase soil shear strength parameters, i.e. cohesion coefficient (C) and internal friction angle (φ) using different additives. Direct shear test has been used for obtaining shear strength parameters as well as Mohr-Coulomb theory has been utilized for calculating of them. Although direct shear machine has its defects and its accuracy is low in comparison with tri-axial machine, however in this study it has been selected due to its simplicity and cheapness. Since this investigation aims to compare various additives and all tests have been done at same condition by direct shear machine, its deficiencies have been neglected. Additives used in present research include: Nano-silica in various percentage, Micro-silica, cement, lime (Cao) and these materials’ combination with together. The reason to choose Nano-silica is that it is a very active super-pozzolanic additive. This additive increases strength of sample significantly through chemical actions. Using silica in soil stabilization depends on type and size of silica particles so that the more finely the more continuous gradation, so property of being finer leads to decrease pores among particles and results to increase strength while light gradation has been achieved. Silica is one of the most popular materials which play a significant role in cohesion and filling. Results of experiments have shown significant effect of these additives in increase of soil shear strength parameters. The lime leads to modify behavioral features of fine-grained soils containing clay (properties such as swelling, shear strength, water absorption ability and plasticity properties) but it should not be in vicinity of sulphate ions.Since, in this condition, presence of lime not only doesn’t play an effective role but also it results to decrease in strength as well as increase in swelling. With regard to this reason, Calcium sulfate (gypsum) was added to soils containing lime in order to study swelling of soils stabilized with lime and nano-silica. Nano-silica increases Soil shear strength parameters while it is efficient in increasing of soil swelling, too.


2017 ◽  
Vol 21 (4) ◽  
pp. 183-188
Author(s):  
Peng He ◽  
Liuying Sun ◽  
Zhen Wang

The present study focuses on some tentative laboratory tests using a newly-constructed modified direct shear test apparatus. The single-stage and multistage direct shear tests were performed to determine the shear rate and test scheme of unsaturated shear test. Shear strength parameters of unsaturated soil in different conditions are obtained and the tests indicate good agreement with typical theories of unsaturated soil, the nonlinear matric suction failure envelope is determined. Some shear strength equations are also fitted through the experimental results. 


Sign in / Sign up

Export Citation Format

Share Document