scholarly journals Towards Relative Permeability Measurements in Tight Gas Formations

2020 ◽  
Vol 146 ◽  
pp. 05001
Author(s):  
Denis Dzhafarov ◽  
Benjamin Nicot

Relative permeability is a concept used to convey the reduction in flow capability due to the presence of multiple fluids. Relative permeability governs the multiphase flow, therefore it has a significant importance in understanding the reservoir behavior. These parameters are routinely measured on conventional rocks, however their measurement becomes quite challenging for low permeability rocks such as tight gas formations. This study demonstrates a methodology for relative permeability measurements on tight gas samples. The gas permeability has been measured by the Step Decay method and two different techniques have been used to vary the saturations: steady state flooding and vapor desorption. Series of steady-state gas/water simultaneous injection have been performed on a tight gas sample. After stabilization at each injection ratio, NMR T2, NMR Saturation profile and low pressure Step Decay gas permeability have been measured. In parallel, progressive desaturation by vapor desorption technique has been performed on twin plugs. After stabilization at each relative humidity level the NMR T2 and Step Decay gas permeability have been measured in order to compare and validate the two approaches. The techniques were used to gain insight into the tight gas two phase relative permeability of extremely low petrophysical properties (K<100 nD, phi < 5 pu) of tight gas samples of Pyrophyllite outcrop. The two methods show quite good agreement. Both methods demonstrate significant permeability degradation at water saturation higher than irreducible. NMR T2 measurements for both methods indicates bimodal T2-distributions, and desaturation first occurs on low T2 signal (small pores). Comparison of humidity drying and steady-state desaturation technique has shown a 12-18 su difference between critical water saturation (Swc) measured in gas/water steady-state injection and irreducible saturation (Swirr) measured by vapor desorption.

1990 ◽  
Vol 112 (4) ◽  
pp. 239-245 ◽  
Author(s):  
S. D. L. Lekia ◽  
R. D. Evans

This paper presents a new approach for the analyses of laboratory-derived capillary pressure data for tight gas sands. The method uses the fact that a log-log plot of capillary pressure against water saturation is a straight line to derive new expressions for both wetting and nonwetting phase relative permeabilities. The new relative permeability equations are explicit functions of water saturation and the slope of the log-log straight line of capillary pressure plotted against water saturation. Relative permeabilities determined with the new expressions have been successfully used in simulation studies of naturally fractured tight gas sands where those determined with Corey-type expressions which are functions of reduced water saturation have failed. A dependence trend is observed between capillary pressure and gas permeability data from some of the tight gas sands of the North American Continent. The trend suggests that the lower the gas permeability, the higher the capillary pressure values at the same wetting phase saturation—especially for saturations less than 60 percent.


SPE Journal ◽  
2016 ◽  
Vol 21 (06) ◽  
pp. 1970-1980 ◽  
Author(s):  
Mahmood Reza Yassin ◽  
Hassan Dehghanpour ◽  
James Wood ◽  
Qing Lan

Summary Recent studies show that the pore network of unconventional rocks, such as gas shales, generally consists of inorganic and organic parts. The organic part is strongly oil-wet and preferentially imbibes the oleic phase. In contrast, the inorganic part is usually hydrophilic and preferentially imbibes the aqueous phase. Conventional theories of relative permeability, which are based on uniform wettability, cannot be applied to determine phase permeability in unconventional rocks with dual-wettability behavior. The objective of this paper is to extend the previous theories to model relative permeability of dual-wettability systems in which oleic and aqueous phases can both act as wetting phases in hydrophobic and hydrophilic pore networks, respectively. In the first part of the paper, we review and discuss the results of scanning electron microscopy (SEM), organic petrography, mercury injection capillary pressure (MICP), and comparative water/oil imbibition experiments conducted on several samples from the Triassic Montney tight gas siltstone play of the Western Canadian Sedimentary Basin. We also discuss various crossplots to understand the reasons behind the observed dual-wettability behavior, and to investigate the spatial distribution and morphology of hydrophilic and hydrophobic pores. In the second part, Purcell's model (Purcell 1949) is extended to develop a conceptual model for relative permeability of gas and water in a dual-wettability system such as the Montney tight gas formation. Finally, the proposed model is compared with measured relative permeability data. The results suggest that the submicron pores within solid bitumen/pyrobitumen are strongly water-repellant; therefore, they prefer gas over water under different saturation conditions. This part of the pore network is usually represented by a long tail at the lower end of the pore-throat-size distribution determined from MICP. The proposed relative permeability model describes single-phase flow of gas through the tail part, and two-phase flow of gas and water through the remaining bell-shaped part of the pore-throat-size distribution, which dominantly represents inorganic micropores. On the basis of our model, by increasing the fraction of water-repellant submicron pores, gas relative permeability decreases for a fixed water saturation. This decrease is ascribed to the reduction of the average size of flow conduits for the gas phase.


1974 ◽  
Vol 14 (06) ◽  
pp. 556-562 ◽  
Author(s):  
A.A. Reznik ◽  
M.K. Dabbous ◽  
P.F. Fulton ◽  
J.J. Taber

Abstract Air and water relative permeabilities have been measured for numerous samplesof Pittsburgh and Pocahontas coals. Tests were performed under steady&lt;stateconditions for both drainage and imbibition cycles. Results indicate that theflow of gas is greatly reduced during the latter process, whereas duringdrainage it is largely undiminished over a wide water-saturation range. It isalso shown that imbibition saturation distributions obtained from liquid-waterimbibition as opposed to water-vapor adsorption produce gas permeability curvesof radically different character. The effective permeabilities to both gas andwater were significantly reduced with the application of overburden pressuresin the range of 0 to 1,000 psig, but the general shapes of the relativepermeability curves remained the same. Introduction Past studies of the spatial and dynamic properties of coal have been limited tosingle-phase flow. The present energy shortage has created renewed interest inthe in-situ combustion of coal to low-Btu gas. The infusion of water into coalseams appears to be effective in abating methane emissions from coal mines.Both these processes require a detailed understanding of two-phase (liquid andgas) flow behavior in coal beds. The purpose of this paper is to extend the work of Dabbous et al. to includethe two-phase flow data on Pittsburgh and Pocahontas coals for air-watersystems. The present data consist of air and water permeabilities measured asfunctions of saturation, saturation history, and overburden pressure. The experimental apparatus and cutting and mounting techniques employed in thisstudy are identical with those described in the first paper. We note, however, that the structural integrity of the samples was maintained during tests thatin some cases extended intermittently over a 6-month period. Measurement of Relative Permeabilities Almost all the effective and relative permeabilities to air and water weremeasured under approximately steady-state conditions by the stationary-phasemethod in which one of the fluids is immobilized within the sample by capillaryforces. However, in a series of runs conducted on a sample of Pittsburgh coal, gas and water relative permeabilities were determined by the Penn State method- that is, the fluids were flowed simultaneously until steady-state equilibriumwas established.


1985 ◽  
Vol 25 (06) ◽  
pp. 945-953 ◽  
Author(s):  
Mark A. Miller ◽  
H.J. Ramey

Abstract Over the past 20 years, a number of studies have reported temperature effects on two-phase relative permeabilities in porous media. Some of the reported results, however, have been contradictory. Also, observed effects have not been explained in terms of fundamental properties known to govern two-phase flow. The purpose of this study was to attempt to isolate the fundamental properties affecting two-phase relative permeabilities at elevated temperatures. Laboratory dynamic-displacement relative permeability measurements were made on unconsolidated and consolidated sand cores with water and a refined white mineral oil. Experiments were run on 2-in. [5.1-cm] -diameter, 20-in. [52.-cm] -long cores from room temperature to 300F [149C]. Unlike previous researchers, we observed essentially no changes with temperature in either residual saturations or relative permeability relationships. We concluded that previous results may have been affected by viscous previous results may have been affected by viscous instabilities, capillary end effects, and/or difficulties in maintaining material balances. Introduction Interest in measuring relative permeabilities at elevated temperatures began in the 1960's with petroleum industry interest in thermal oil recovery. Early thermal oil recovery field operations (well heaters, steam injection, in-situ combustion) indicated oil flow rate increases far in excess of what was predicted by viscosity reductions resulting from heating. This suggested that temperature affects relative permeabilities. One of the early studies of temperature effects on relative permeabilities was presented by Edmondson, who performed dynamic displacement measurements with crude performed dynamic displacement measurements with crude and white oils and distilled water in Berea sandstone cores. Edmondson reported that residual oil saturations (ROS's) (at the end of 10 PV's of water injected) decreased with increasing temperature. Relative permeability ratios decreased with temperature at high water saturations but increased with temperature at low water saturations. A series of elevated-temperature, dynamic-displacement relative permeability measurements on clean quartz and "natural" unconsolidated sands were reported by Poston et al. Like Edmondson, Poston et al. reported a decrease in the "practical" ROS (at less than 1 % oil cut) as temperature increased. Poston et al. also reported an increase in irreducible water saturation. Although irreducible water saturations decreased with decreasing temperature, they did not revert to the original room temperature values. It was assumed that the cores became increasingly water-wet with an increase in both temperature and time; measured changes of the IFT and the contact angle with temperature increase, however, were not sufficient to explain observed effects. Davidson measured dynamic-displacement relative permeability ratios on a coarse sand and gravel core with permeability ratios on a coarse sand and gravel core with white oil displaced by distilled water, nitrogen, and superheated steam at temperatures up to 540F [282C]. Starting from irreducible water saturation, relative permeability ratio curves were similar to Edmondson's. permeability ratio curves were similar to Edmondson's. Starting from 100% oil saturation, however, the curves changed significantly only at low water saturations. A troublesome aspect of Davidson's work was that he used a hydrocarbon solvent to clean the core between experiments. No mention was made of any consideration of wettability changes, which could explain large increases in irreducible water saturations observed in some runs. Sinnokrot et al. followed Poston et al.'s suggestion of increasing water-wetness and performed water/oil capillary pressure measurements on consolidated sandstone and limestone cores from room temperature up to 325F [163C]. Sinnokrot et al confirmed that, for sandstones, irreducible water saturation appeared to increase with temperature. Capillary pressures increased with temperature, and the hysteresis between drainage and imbibition curves reduced to essentially zero at 300F [149C]. With limestone cores, however, irreducible water saturations remained constant with increase in temperature, as did capillary pressure curves. Weinbrandt et al. performed dynamic displacement experiments on small (0.24 to 0.49 cu in. [4 to 8 cm3] PV) consolidated Boise sandstone cores to 175F [75C] PV) consolidated Boise sandstone cores to 175F [75C] with distilled water and white oil. Oil relative permeabilities shifted toward high water saturations with permeabilities shifted toward high water saturations with increasing temperature, while water relative permeabilities exhibited little change. Weinbrandt et al. confirmed the findings of previous studies that irreducible water saturation increases and ROS decreases with increasing temperature. SPEJ P. 945


1964 ◽  
Vol 4 (01) ◽  
pp. 49-55 ◽  
Author(s):  
Pietro Raimondi ◽  
Michael A. Torcaso

Abstract The distribution of the oil phase in Berea sandstone resulting from increasing and decreasing the water saturation by imbibition was investigated Three types of distribution were recognized: trapped, normal and lagging. The amount of oil in each of these distributions was determined as a function of saturation by carrying out a miscible displacement in the oil phase under steady-state conditions of saturation. These conditions were maintained by flowing water and oil simultaneously in given ratios and by using a displacing solvent having essentially the same density and viscosity as the oil.A correlation shows the amount of trapped oil at any saturation to be directly proportional to the conventional residual oil saturation Sir The factor of proportionality is related to the fractional permeability to the water phase. Part of the oil which was not trapped was displaced in a piston- like manner (normal part) and part was eluted gradually (lagging part). The observed phenomena are more than of mere academic importance. Oil which is trapped may well provide the fuel essential for forward combustion and thus be beneficial. On the contrary, in tertiary recovery operations, it is this trapped oil which seems to make current techniques uneconomic. Introduction A typical oilfield may initially contain connate water and oil. After a period of primary production water often enters the field either from surrounding aquifers or from surface injection. During primary production evolution and establishment of a free gas saturation usually occurs. The effect and importance of this third phase is fully recognized. However, this investigation is limited to a two- phase system, one wetting phase (water) and one non-wetting phase (oil). The increase in water content of a water-wet system is termed imbibition. In a relative permeability-saturation diagram such as the one shown in Fig. 1, the initial conditions of the field would he represented by a point below a water saturation of about 35 per cent, i.e., where the imbibition and the drainage curves to the non-wetting phase nearly coincide. When water enters the field the relative permeability to oil decreases along the imbibition curve. At watered-out conditions the relative permeability to the oil becomes zero. At this point a considerable amount of oil, called residual oil, (about 35 per cent in Fig. 1) remains unrecovered. Any attempt to produce this oil will require that its saturation be increased. In Fig. 1 this would mean retracing the imbibition curve upwards. In addition, processes like alcohol and fire flooding, which can be employed at any stage of production, involve the complete displacement of connate water and an increase, or imbibition, of water saturation ahead of the displacing front. Thus, in several types of oil production it is the imbibition-relative permeability curve which rules the flow behavior. For this reason a knowledge of the distribution of the non-wetting phase, as obtained through imbibition, whether "coming down" or "going up" on the imbibition curve, is important. SPEJ P. 49^


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Dong Ma ◽  
Changwei Liu ◽  
Changhui Cheng

Relative permeability as an important petrophysical parameter is often measured directly in the laboratory or obtained indirectly from the capillary pressure data. However, the literature on relationship between relative permeability and resistivity is lacking. To this end, a new model of inferring two-phase relative permeability from resistivity index data was derived on the basis of Poiseuille's law and Darcy's law. The wetting phase tortuosity ratio was included in the proposed model. The relative permeabilities computed from the capillary pressure data, as well as the experimental data measured in gas–water and oil–water flow condition, were compared with the proposed model. Both results demonstrated that the two-phase permeability obtained by proposed model were generally in good agreement with the data computed from capillary pressure and measured in the laboratory. The comparison also showed that our model was much better than Li model at matching the relative permeability data.


2013 ◽  
Vol 53 (1) ◽  
pp. 363
Author(s):  
Yangfan Lu ◽  
Hassan Bahrami ◽  
Mofazzal Hossain ◽  
Ahmad Jamili ◽  
Arshad Ahmed ◽  
...  

Tight-gas reservoirs have low permeability and significant damage. When drilling the tight formations, wellbore liquid invades the formation and increases water saturation of the near wellbore area and significantly deceases permeability of this area. Because of the invasion, the permeability of the invasion zone near the wellbore in tight-gas formations significantly decreases. This damage is mainly controlled by wettability and capillary pressure (Pc). One of the methods to improve productivity of tight-gas reservoirs is to reduce IFT between formation gas and invaded water to remove phase trapping. The invasion of wellbore liquid into tight formations can damage permeability controlled by Pc and relative permeability curves. In the case of drilling by using a water-based mud, tight formations are sensitive to the invasion damage due to the high-critical water saturation and capillary pressures. Reducing the Pc is an effective way to increase the well productivity. Using the IFT reducers, Pc effect is reduced and trapped phase can be recovered; therefore, productivity of the TGS reservoirs can be increased significantly. This study focuses on reducing phase-trapping damage in tight reservoirs by using reservoir simulation to examine the methods, such use of IFT reducers in water-based-drilled tight formations that can reduce Pc effect. The Pc and relative permeability curves are corrected based on the reduced IFT; they are then input to the reservoir simulation model to quantitatively understand how IFT reducers can help improve productivity of tight reservoirs.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1676-1683 ◽  
Author(s):  
Bin Li ◽  
Wan Fen Pu ◽  
Ke Xing Li ◽  
Hu Jia ◽  
Ke Yu Wang ◽  
...  

To improve the understanding of the influence of effective permeability, reservoir temperature and oil-water viscosity on relative permeability and oil recovery factor, core displacement experiments had been performed under several experimental conditions. Core samples used in every test were natural cores that came from Halfaya oilfield while formation fluids were simulated oil and water prepared based on analyze data of actual oil and productive water. Results from the experiments indicated that the shape of relative permeability curves, irreducible water saturation, residual oil saturation, width of two-phase region and position of isotonic point were all affected by these factors. Besides, oil recovery and water cut were also related closely to permeability, temperature and viscosity ratio.


Author(s):  
Christos D. Tsakiroglou

The steady-state gas, k rg, and water, k rw, relative permeabilities are measured with experiments of the simultaneous flow, at varying flow rates, of nitrogen and brine (aqueous solution of NaCl brine) on a homogeneous sand column. Two differential pressure transducers are used to measure the pressure drop across each phase, and six ring electrodes are used to measure the electrical resistance across five segments of the sand column. The electrical resistances are converted to water saturations with the aid of the Archie equation for resistivity index. Both k rw and k rg are regarded as power functions of water, Caw, and gas, Cag, capillary numbers, the exponents of which are estimated with non-linear fitting to the experimental datasets. An analogous power law is used to express water saturation as a function of Caw, and Cag. In agreement to earlier studies, it seems that the two-phase flow regime is dominated by connected pathway flow and disconnected ganglia dynamics for the wetting fluid (brine), and only disconnected ganglia dynamics for the non-wetting fluid (gas). The water saturation is insensitive to changes of water and gas capillary numbers. Each relative permeability is affected by both water and gas capillary numbers, with the water relative permeability being a strong function of water capillary number and gas relative permeability depending strongly on the gas capillary number. The slope of the water relative permeability curve for a gas/water system is much higher than that of an oil/water system, and the slope of the gas relative permeability is lower than that of an oil/water system.


Sign in / Sign up

Export Citation Format

Share Document