scholarly journals Irrigation of the cultivated area with groundwater from vertical drainage wells

2021 ◽  
Vol 264 ◽  
pp. 01015
Author(s):  
Zulfiya Mirkhasilova ◽  
Мurat Yakubov ◽  
Lyudmila Irmuhamedova

In recent years, there has been a shortage of water resources in the basins of the Amu Darya and Syrdarya rivers, which is the result of the development of new lands for irrigation and the inappropriate use of water and land resources. A side effect of irrigation and land reclamation is the increasing flow of collector-drainage waters every year, which leads to a deterioration in the land reclamation state and pollution of water resources, which can lead to the ecological disaster of land and water resources. Currently, in the Republic of Uzbekistan, from the total volume of water resources of the Amu Darya and Syrdarya rivers, up to 68% is used for irrigation. Of this volume on the Republic territory, about 12% of collector-drainage waters of deteriorated quality are formed. With a shortage of water resources, they are used for irrigation. But irrigation with saline waters can lead to a deterioration in the land reclamation state. In this regard, new irrigation technologies are proposed, which can save both irrigation water and it is advisable to use underground pumped water for irrigation. Field experiments were carried out in the farm "Khozhilkhon-hozhi" in the farm named after A. Niyazov, Kuva district, Fergana region. A feature of the soil conditions in this farm is the small thickness of the covered fine earth, underlain by highly permeable gravel, strong and increased water permeability, with a deep groundwater level (GWL> 3 m). Large water losses are observed during irrigation. The calculation task was to determine how many hectares of land can be irrigated from one vertical drainage well, taking into account the irrigation time, inter-irrigation period, etc. The water-salt balance of the reclaimed lands for 2017-2019 was compiled. The water-salt balance showed that water supply and filtration from canals and atmospheric precipitation play the main role in the inlet part. In the consumable part, the main place is occupied by evapotranspiration and drainage flow. In general, a negative balance is formed on the territory annually by the type of a small salt carryover within 2.85 t / ha. On the territory of the farm and the experimental plot, cotton of the S-6524 variety was sown, the flow rate of the well is 30 l / s, the furrow consumption is 0.5 l / s. The composition of hypothetical salts in the pumped-out waters is calculated After the first irrigation of our field, the pumped-out water is diverted to the neighboring fields, while the first inter-irrigation period is 20 days. In the interval of these 20 days until the second irrigation of the cotton of the original field, it is possible to irrigate the same fields 5 hectares 8 times, in total 40 hectares of land. The experiments showed that irrigation with pumped water from vertical drainage wells did not have a negative impact on the yield of cotton. And the use of the recommended irrigation technology will reduce the shortage of irrigation water and improve the ecological situation of water resources.

2019 ◽  
Vol 11 (7) ◽  
pp. 2096 ◽  
Author(s):  
Guifang Li ◽  
Dingyang Zhou ◽  
Minjun Shi

Reducing agricultural water use is an inevitable choice to alleviate water shortage in arid and semi-arid regions, and high-efficiency irrigation technologies provide conditions for water conservation. However, without unified water resources management policy to redistribute the saved agricultural water, farmers’ behavior will lead to water rebound and large-scale expansion of cultivated areas, especially on the edge of oasis regions. To solve these issues and promote the sustainable development of water resources, it makes sense to explore the impact of unified water resources management policy from the perspective of farmers’ behavior. This study takes the typical irrigation zone in the Heihe River Basin as a case to discuss the response of farmers’ economic behavior to transferring irrigation water and restricting land reclamation, i.e., the unified water resources management policy with the technical efficiency of crop irrigation improved based on the bio-economic model. The results show that in the case of loosening land constraints, farmers will reuse all the saved water for agricultural production by reclaiming unused land or increasing the area of water-intensive crops (vegetables). Although the policy of restricting land reclamation can restrict land expansion, it cannot avoid water rebound caused by adjusting the crop-planting structure. Farmers’ land-expansion behavior can be largely restricted by transferring the saved irrigation water to non-agricultural sectors in irrigation zones with inadequate water, but to contain land-expansion behavior in irrigation zones with surplus water, the policy of restricting land reclamation must be implemented simultaneously. The study also reveals that farmers will choose to grow more cash crops (seed maize, vegetables, tomato, seed watermelon, potato, and rapeseed) and fewer food crops (wheat, maize) to increase the profit per unit of water in the scenario of loosening land constraints or transferring agricultural water. Furthermore, the study indicates that farmers’ economic income can be decreased or at least not increased with the transfer of agricultural water. Both benefit compensation from non-agricultural sectors and increased non-agricultural income can compensate farmers’ economic loss. Therefore, it is necessary to improve water rights trading systems and increase employment opportunities for surplus agricultural labor to promote economic development in rural areas.


2017 ◽  
Vol 43 (4) ◽  
pp. 1812
Author(s):  
Y. Mertzanides ◽  
V. Ziannos ◽  
C. Tsobanoglou ◽  
E. Kosmidis

In places where primary and secondary economic sectors are significant proportion of local economy, the quantity and quality of irrigation water has not only environmental but also economical and social affects in local society. A rational management of water resources demands reliable and quick information of the quality of irrigation water especially during summer. The monthly scheduled samplings that are usually followed by the state services in some cases are not adequate. A telemetry network of four stations for real-time monitoring the quality of irrigation water was designed by Directorate of Land Reclamation/Prefecture of Kavala. It covers the most important agricultural areas of prefecture, including the island of Thassos. Stations are equipped with modern and robust instrumentation (multiparameter sensors, data loggers, modems, ups, sophisticated software, etc) to measure physicochemical characteristics of surface and ground water. The records are 24 hours a day and they are transmitted via GPRS. It consists an innovative initiative for local authorities to have the ability of real-time information about the quality of irrigation water and hereupon plan their actions. The system is expected to provide useful scientific data and an effective tool towards a policy of rational management of local water resources.


2021 ◽  
Vol 264 ◽  
pp. 04016
Author(s):  
Ikromali Akhmedov ◽  
Zulfiya Mirkhasilova

Vertical drainage wells in terms of construction technology and design do not differ from wells for irrigation. They are not deeper in-depth than irrigation wells and are generally 40-70 m. The main task of vertical drainage wells is land reclamation. They, depending on natural and economic conditions, serve on 5-120 hectares of area. In many areas, vertical drainage wells serve a dual purpose; land reclamation and irrigation of agricultural crops. Water intake wells, including vertical drainage wells, are characterized by a decrease in their flow rates during operation. To ensure the stable operation of the irrigation and drainage system, where water intake wells are operated, repair and restoration work is carried out on them, aimed at increasing flow rates. For the construction of vertical drainage wells in the Sirdarya river basin, steel pipes and filters are mainly used, which corrode in an aggressive environment. In the water intake zone of the well and the metal corrosion process, the colmatation process also occurs. All of them are the main reasons for the decline in well production rates. The carried out repair and restoration measures are aimed at destroying the structure of corrosion and clogging products. In practice, mechanical, physical, biological, and chemical methods are used to clean the filters of water intake wells. They all have their own technology and equipment. However, all these works do not exclude the repeatability of the process. Repetitive workover will come to ineffective, the stage of good concertation is approaching. It is known that polymeric materials do not corrode. They work steadily in aggressive environments. To prevent the corrosion process, polymeric-seam pipes were used as a filter frame and a casing for the construction of vertical drainage wells. Two pilot wells were built on the territory of the Chiyili district of the Kyzylorda region of the Republic of Kazakhstan. The wells were drilled with a rotary drilling unit with backwash. Pure water (irrigation) was used as drilling fluid. To form a gravel pack in the annular zone of the casing, gravel-sand material from the Jailma quarry was used. The material was brought by rail and road transport. Pipe sections were prepared on the surface of 10 meters. Steel rings were put on the pipe from both ends of each section; their connection in the barrel was made by electric welding. The results showed that in the initial period of operation, a decline process was observed. In further exploitation, the well flow rate stabilized. As a result of construction using pipes and filters made of polymer material, the effect was achieved in terms of water volume more than 3 times and in terms of service life 4.2 times compared to a metal filter well.


2021 ◽  
pp. 49-55
Author(s):  
Balzhan Amanbaeva ◽  
Ermekkul Zhaparkulova ◽  
Mustafa Mustafayev ◽  
Josef Mosiej

The article presents the method of water resources management in the Asa river basin and indicators of water intake, water supply and assessment of water quality. Water is an economically important resource that determines the sustainability of a country’s development. New trends show that water issues are becoming more complex with other sectors, including agriculture, energy, industry, transport, and communications, as well as with social sectors: education, environment, and healthcare, rural or regional development. The rational use of water resources, as well as the protection of water resources and access to drinking water are an important priority for the world community. The Republic of Kazakhstan is no exception, since the deficit of water resources is growing every year. Today’s global challenges, especially climate change and population growth, are making the situation even more worrisome. Climate change is caused by dynamic processes on Earth, external influences such as fluctuations in the intensity of sunlight, and recent human activities. Consequently, in the conditions of Kazakhstan, where water resources are limited, and irrigation develops in various natural and climatic zones, further intensification of irrigated agriculture can be carried out through the development of environmentally friendly integrated technologies, ecological and reclamation management of water and land resources, ensuring a decrease in the amount of unproductive losses of irrigation water, as well as protection of water and land resources from pollution by collector-waste waters, leaching of organic substances and nutrients, the rate of salt accumulation in the root layer and the rate of alkalization and alkalinization processes. This approach is predetermined by the fact that the existing methods of water resources management inevitably lead to large losses of irrigation water for infiltration, discharge and evaporation, the value of which reaches 60–70% of the water intake.


The article is devoted to the issues of water conservation and efficient use of water resources by improving the existing methods of irrigation through the furrows and the creation of new technical means ensuring the rational use of water and land resources during furrow irrigation, contributing to irrigation water savings. The proposed technology based on the fact that this measure is achieved by presenting changes and the automation of the working bodies of agricultural machinery involved in land reclamation measures, in particular, a furrow cutter and a bottom compactor. The technology allows for the production of agricultural industrial crops to use automated control of the working body when cutting furrows, to save water on irrigated areas and to achieve high yields due to the sustainable development of crops, and the proposed technical tool relates to agricultural machinery, especially a tool for caring of row crops, irrigated crops, the purpose of the invention, which is the creation of uneven compaction soil in the furrow bed along its length, with a change in soil density from the maximum value at the beginning and the minimum at the end, according to the irrigation method. The proposed technical tool is used for the device of uneven soil compaction in the furrow bed along the entire length, with a smooth change in soil density from maximum at the beginning and minimum at the end. The proposed technology and technical means provide: -increasing the efficiency of the use of water resources by creating a sustainable profile and design slope of the furrow saves irrigation water in the range of 10-12%; - water saving and energy saving by creating a stable profile and slope of the furrow of the irrigated field, providing high uniformity of moistening of the root layer of the soil along the entire length of the furrows, especially when cutting them, new laser technologies and highly efficient trailed technical means and production methods were used, providing material savings of 6- 8%.


2020 ◽  
pp. 1-19
Author(s):  
Cinalberto Bertozzi ◽  
Fabio Paglione

The Burana Land-Reclamation Board is an interregional water board operating in three regions and five provinces. The Burana Land-Reclamation Board operates over a land area of about 250,000 hectares between the Rivers Secchia, Panaro and Samoggia, which forms the drainage basin of the River Panaroand part of the Burana-Po di Volano, from the Tuscan-Emilian Apennines to the River Po. Its main tasks are the conservation and safeguarding of the territory, with particular attention to water resources and how they are used, ensuring rainwater drainage from urban centres, avoiding flooding but ensuringwater supply for crop irrigation in the summer to combat drought. Since the last century the Burana Land-Reclamation Board has been using innovative techniques in the planning of water management schemes designed to achieve the above aims, improving the management of water resources while keeping a constant eye on protection of the environment.


Author(s):  
Ramiz Tagirov ◽  
◽  
Maya Zeynalova ◽  

The article examines the problem of fresh water, since in terms of water supply from its own resources per capita and per 1 km2, the republic is 8 times behind Georgia, 2 times behind Armenia. Significant water consumption in Azerbaijan is caused by its arid territory with a predominance of active temperature and a lack of precipitation, which leads to intensive irrigation of crops. At the same time, artificial irrigation is used on 70% of the cultivated land.


2020 ◽  
Vol 6 (2) ◽  
pp. 43-49
Author(s):  
Zulfiya Mirkhasilova ◽  
◽  
Murat Yakubov ◽  
Khurshida Yakubova

The article talks about the rational use of water pumped out of vertical drainage wells. The solution to the problem is determined by irrigation with water from vertical drainage wells, without dumping them into the collector-drainage network. An example of irrigation is given on the experimental plot of the Kuva region, the farm "Musazhon Ismoilov".


Author(s):  
Yu Zhang ◽  
Jieyong Wang ◽  
Chun Dai

Driven by technological progress and market demand, the optimization and adjustment of grain planting structure played an important role in increasing grain output. Due to the great difference between the yield per unit area of different types of food crops, the consumption of cropland and water resources has a significant change during the grain growth. From the perspective of structural adjustment, rather than the usual productive factor input, we analyze the process of adjustment for grain planting structure in China and its effect on the consumption of cropland and water resources by using the scenario comparative analysis method. The results show that: (1) From 2003 to 2019, China’s grain output has increased steadily and the planting structure has changed greatly. Rice was replaced by corn to become the grain crop with the maximum proportion of planting area since 2007. The increase of corn planting structure proportion is concentrated in the northern regions. (2) At the national level, according to the adjustment of grain planting structure, the saving of cropland and water resources consumption showed a “cumulative effect” as time went on. (3) The saving effects of structural adjustment in the northern regions on cropland and water resources consumption are better than that in the southern regions, such as Northeast China Plain, Northern arid and semiarid region and Loess Plateau. (4) In reality, although the adjustment of grain planting structure saved lots of cropland and water resources, the continuous growth of grain output has increased the pressure on the ecological environment in the northern regions according to theirs water limits. Therefore, it is necessary to continuously optimize the grain planting structure and restrict land reclamation in northern China. In addition, to ensure food security, it is feasible to encourage the southern regions with abundant water and heat resources to increase the grain planting area and meet its self-sufficiency in grain demand.


Sign in / Sign up

Export Citation Format

Share Document