scholarly journals Multiparameter mathematical models of the filtration problem of unstructured and structured fluids

2021 ◽  
Vol 264 ◽  
pp. 01030
Author(s):  
Shukur Qayumov ◽  
Arslan Mardanov ◽  
Anvar Qayumov ◽  
Tojiboy Xaitov

The article is devoted to constructing a generalized mathematical model and the method of their solution of the process of filtration of fluids with various linear and nonlinear characteristics. The multiparameter model contains 13 mathematical models developed in due time by scientific research and included new mathematical models. The classification of these models is carried out in accordance with the laws of filtration, and they are confirmed by the results of numerical solutions. For unknown boundaries of disturbances, the application of the "shuttle" iteration method made it possible to reduce the number of iterations.

2021 ◽  
pp. 68-71
Author(s):  

The use of mathematical models is of great importance for the automation of the design of technological processes. Representation of the geometric parameters of the part in the form of mathematical models allows automating the development of the structure and calculation of the parameters of the technological process, which is important for the complete digitalization of the technological preparation of production. Keywords: technological process, design, mathematical model, digitalization. [email protected]


2015 ◽  
Vol 725-726 ◽  
pp. 1218-1223
Author(s):  
Anastasiya Shevtsova ◽  
Marina Yablonovskaya ◽  
Alexey Borovskoy

Article is devoted to studying of traffic flows using the origin-destination matrix. The first paragraph of this article deals with the possibility of applying the origin-destination matrix when modeling load of transport network. The types of transportations, the factors that affect the loading of the transport network are described. The concept of a generalized path cost, interdistrict transportations and some others are considered. There are proposed several steps to create a origin-destination matrix. In the second paragraph of the paper is proposed the classification of mathematical models that can be applied in the simulation of traffic flow, as well as their features are marked. This will help in the processing of data for selection of a mathematical model that satisfies the requirements and objectives that have set themselves researchers. The conclusions on the application of mathematical models in the study of traffic flow are made.


2018 ◽  
Vol 15 (1) ◽  
pp. 39-55
Author(s):  
V. B. Rudakov ◽  
V. M. Makarov ◽  
M. I. Makarov

The article considers the problem of determining the rational plans of the input sampling reliability and technical parameters of components of space technology, the totality of which is supplied to the Assembly plants for the manufacture of complex products of space technology. Problem statement and mathematical model based on the minimization of the economic costs of control and losses related to the risks of taking wrong decisions, are given in the article. The properties of the mathematical models are investigated, the algorithm for its optimization is developed. The result is an optimal plan for the sampling of sets of components, which includes: an optimal product mix subject to mandatory control of the aggregate and optimum risks of first and second kind, when acceptance number of statistical plan is zero. The latter circumstance is due to the high requirements of reliability and technical parameters of products of space technology.


Author(s):  
Sherif Fakher ◽  
Abdelaziz Khlaifat ◽  
M. Enamul Hossain ◽  
Hashim Nameer

AbstractIn many oil reservoirs worldwide, the downhole pressure does not have the ability to lift the produced fluids to the surface. In order to produce these fluids, pumps are used to artificially lift the fluids; this method is referred to as artificial lift. More than seventy percent of all currently producing oil wells are being produced by artificial lift methods. One of the most applied artificial lift methods is sucker rod pump. Sucker rod pumps are considered a well-established technology in the oil and gas industry and thus are easy to apply, very common worldwide, and low in capital and operational costs. Many advancements in technology have been applied to improve sucker rod pumps performance, applicability range, and diagnostics. With these advancements, it is important to be able to constantly provide an updated review and guide to the utilization of the sucker rod pumps. This research provides an updated comprehensive review of sucker rod pumps components, diagnostics methods, mathematical models, and common failures experienced in the field and how to prevent and mitigate these failures. Based on the review conducted, a new classification of all the methods that can fall under the sucker rod pump technology based on newly introduced sucker rod pump methods in the industry has been introduced. Several field cases studies from wells worldwide are also discussed in this research to highlight some of the main features of sucker rod pumps. Finally, the advantages and limitations of sucker rod pumps are mentioned based on the updated review. The findings of this study can help increase the understanding of the different sucker rod pumps and provide a holistic view of the beam rod pump and its properties and modeling.


2021 ◽  
Vol 40 (4) ◽  
pp. 8493-8500
Author(s):  
Yanwei Du ◽  
Feng Chen ◽  
Xiaoyi Fan ◽  
Lei Zhang ◽  
Henggang Liang

With the increase of the number of loaded goods, the number of optional loading schemes will increase exponentially. It is a long time and low efficiency to determine the loading scheme with experience. Genetic algorithm is a search heuristic algorithm used to solve optimization in the field of computer science artificial intelligence. Genetic algorithm can effectively select the optimal loading scheme but unable to utilize weight and volume capacity of cargo and truck. In this paper, we propose hybrid Genetic and fuzzy logic based cargo-loading decision making model that focus on achieving maximum profit with maximum utilization of weight and volume capacity of cargo and truck. In this paper, first of all, the components of the problem of goods stowage in the distribution center are analyzed systematically, which lays the foundation for the reasonable classification of the problem of goods stowage and the establishment of the mathematical model of the problem of goods stowage. Secondly, the paper abstracts and defines the problem of goods loading in distribution center, establishes the mathematical model for the optimization of single car three-dimensional goods loading, and designs the genetic algorithm for solving the model. Finally, Matlab is used to solve the optimization model of cargo loading, and the good performance of the algorithm is verified by an example. From the performance evaluation analysis, proposed the hybrid system achieve better outcomes than the standard SA model, GA method, and TS strategy.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
E. H. Doha ◽  
D. Baleanu ◽  
A. H. Bhrawy ◽  
R. M. Hafez

A new Legendre rational pseudospectral scheme is proposed and developed for solving numerically systems of linear and nonlinear multipantograph equations on a semi-infinite interval. A Legendre rational collocation method based on Legendre rational-Gauss quadrature points is utilized to reduce the solution of such systems to systems of linear and nonlinear algebraic equations. In addition, accurate approximations are achieved by selecting few Legendre rational-Gauss collocation points. The numerical results obtained by this method have been compared with various exact solutions in order to demonstrate the accuracy and efficiency of the proposed method. Indeed, for relatively limited nodes used, the absolute error in our numerical solutions is sufficiently small.


1998 ◽  
Vol 84 (6) ◽  
pp. 2154-2162 ◽  
Author(s):  
Cord Sturgeon ◽  
Albert D. Sam ◽  
William R. Law

Rapid measurement of glomerular filtration rate (GFR) by an inulin single-bolus technique would be useful, but its accuracy has been questioned. We hypothesized that reported inaccuracies reflect the use of inappropriate mathematical models. GFR was measured in 14 intact and 5 unilaterally nephrectomized conscious male Sprague-Dawley rats (mean weight 368 ± 12 g) by both single-bolus (25 mg/kg) and constant-infusion techniques (0.693 mg ⋅ kg−1 ⋅ min−1). The temporal decline in plasma inulin concentration was analyzed through biexponential curve fitting, which accounted for renal inulin loss before complete vascular and interstitial mixing. We compared our mathematical model based on empirical rationale with those of other investigators whose studies suggest inaccuracy of single-bolus methods. Our mathematical model yielded GFR values by single bolus that agreed with those obtained by constant infusion [slope = 0.94 ± 0.16 (SE); y intercept = 0.23 ± 0.64; r = 0.82]. In comparison to the data obtained by constant inulin infusion, this method yielded a very small bias of −0.0041 ± 0.19 ml/min. Two previously reported models yielded unsatisfactory values (slope = 1.46 ± 0.34, y intercept = 0.47 ± 1.5, r = 0.72; and slope = 0.17 ± 1.26, y intercept = 17.15 ± 5.14, r = 0.03). The biases obtained by using these methods were −2.21 ± 0.42 and −13.90 ± 1.44 ml/min, respectively. The data indicate that when appropriate mathematical models are used, inulin clearance after single-bolus delivery can be used to measure GFR equivalent to that obtained by constant infusion of inulin. Attempts to use methods of analysis for simplicity or expediency can result in unacceptable measurements relative to the clinical range of values seen.


2014 ◽  
Vol 986-987 ◽  
pp. 1418-1421
Author(s):  
Jun Shan Li

In this paper, we propose a meshless method for solving the mathematical model concerning the leakage problem when the pressure is tested in the gas pipeline. The method of radial basis function (RBF) can be used for solving partial differential equation by writing the solution in the form of linear combination of radius basis functions, that is, when integrating the definite conditions, one can find the combination coefficients and then the numerical solution. The leak problem is a kind of inverse problem that is focused by many engineers or mathematical researchers. The strength of the leak can find easily by the additional conditions and the numerical solutions.


Sign in / Sign up

Export Citation Format

Share Document