scholarly journals Method for assessing the energy efficiency of a vehicle taking into account the load under operating conditions

2021 ◽  
Vol 264 ◽  
pp. 05033
Author(s):  
Umidulla Abdurazzokov ◽  
Bakhramjan Sattivaldiev ◽  
Ravshan Khikmatov ◽  
Shakhnoza Ziyaeva

In operation conditions, the transport work of a vehicle is estimated by the increment in the mass of the freight over the distance traveled. This criterion does not characterize the mechanical work of the vehicle in the transport process. Without analyzing the energy costs of performing mechanical work, it is impossible to assess the energy efficiency of a vehicle. The energy efficiency of a vehicle is defined as the ratio of the mechanical work performed by the vehicle to the potential energy of the source. In this paper, it is proposed to determine the engine torque by fuel consumption. The engine torque value depends on the energy required for driving the vehicle. Based on the analysis of the results of computational and experimental studies, a method for assessing the energy efficiency of a vehicle with an internal combustion engine is proposed. The reliability of the results obtained is substantiated by the test results and the available information in practice.

2016 ◽  
Vol 68 (3) ◽  
pp. 430-438 ◽  
Author(s):  
Christopher Sous ◽  
Henrik Wünsch ◽  
Georg Jacobs ◽  
Christoph Broeckmann

Purpose The purpose of this paper is to investigate the applicability of the quadratic failure hypothesis (QFH) on journal bearings coated with a white metal sliding layer on the prediction of safe and unsafe operating conditions. The hypothesis covers operation conditions under static and dynamical loading. Design/methodology/approach Material tests and elastohydrodynamic, as well as structural, simulations were conducted to provide the required input data for the failure hypothesis. Component samples were tested to verify the results of the QFH. Findings The load bearing capacity of journal bearings was analysed for different operating conditions by the use of the QFH. Results allow for the identification of critical and non-critical loading conditions and are in accordance with component test results. Originality/value Today’s design guidelines for journal bearings do not consider a multi-axial stress state and actual stress distribution. The applied hypothesis enables consideration of multiaxiality inside the sliding surface layer, as well as determining the location of bearing fatigue due to material overload.


2011 ◽  
Vol 159 (1) ◽  
pp. 155-167
Author(s):  
Włodzimierz KUPICZ ◽  
Stanisław NIZIŃSKI

The paper presents a new method for diagnosing an internal combustion engine with compression ignition under traction conditions. The gist lies in determining the engine torque on the basis of acceleration recording in traffic conditions. The results of extensive preliminary and basic experimental studies have been discussed. Three options have been developed of the internal combustion engine diagnostic model, using the trivalent assessment of states. State control and engine damage localization algorithms have been proposed. The new method has been examined under traction conditions. The probability of the internal combustion engine correct diagnosis ranges between 0.85÷1.


Author(s):  
Nicolò Cavina ◽  
Fabrizio Ponti

Abstract The paper presents the development of a methodology for evaluating the torque non-uniformity between the various cylinders of an Internal Combustion Engine (ICE). This non-uniformity can be due, for example, to pathological operating conditions such as misfires or misfuels, as well as to other abnormal operating conditions. Between the nominal torque production and the one corresponding to the absence of combustion there exist, in fact, a series of possible intermediate conditions. Each of them corresponds to a value of produced torque that lies between the nominal value and the one corresponding to the lack of combustion (due for example to statistical dispersion in manufacturing or aging in the injection system). The diagnosis of this type of non-uniformity is a very important issue in today’s engine control strategies design. The use of the developed methodology should in fact allow the control strategy to adopt the appropriate interventions if the diagnosed non-uniformity is related to different behavior of the injectors. In order to evaluate this torque production variability between the various cylinders, information hidden in the instantaneous crankshaft speed fluctuations has been processed using a suitable methodology. The procedure has been validated running a supercharged 2.0 liters V6 engine, and a 1.2 liters L4 engine, in a test cell. During the tests, the in-cylinder pressure signal has been acquired together with the instantaneous engine speed, in order to determine a correlation between speed fluctuations and the indicated torque produced by each cylinder. The actual cylinder by cylinder torque non-uniformity can then be evaluated on-board by processing engine speed. The procedure is able to diagnose the absence of combustion (due for example to a misfire or a misfuel) as well as abnormal combustions that do not necessarily involve lack of combustion, with the accuracy needed for on-board use. Control interventions to injection and ignition time commands of one or more cylinders should in most cases be able to re-establish torque production uniformity.


2003 ◽  
Vol 125 (4) ◽  
pp. 1050-1058 ◽  
Author(s):  
N. Cavina ◽  
F. Ponti

The paper presents the development of a methodology for evaluating the torque nonuniformity between the various cylinders of an internal combustion engine (ICE). This nonuniformity can be due, for example, to pathological operating conditions such as misfires or misfuels, as well as to other abnormal operating conditions. Between the nominal torque production and the one corresponding to the absence of combustion there exist, in fact, a series of possible intermediate conditions. Each of them corresponds to a value of produced torque that lies between the nominal value and the one corresponding to the lack of combustion (due for example to statistical dispersion in manufacturing or aging in the injection system). The diagnosis of this type of nonuniformity is a very important issue in today’s engine control strategies design. The use of the developed methodology should in fact allow the control strategy to adopt the appropriate interventions if the diagnosed nonuniformity is related to different behavior of the injectors. In order to evaluate this torque production variability between the various cylinders, information hidden in the instantaneous crankshaft speed fluctuations has been processed using a suitable methodology. The procedure has been validated running a supercharged 2.0 liters V6 engine, and a 1.2 liters L4 engine, in a test cell. During the tests, the in-cylinder pressure signal has been acquired together with the instantaneous engine speed, in order to determine a correlation between speed fluctuations and the indicated torque produced by each cylinder. The actual cylinder-by-cylinder torque nonuniformity can then be evaluated on-board by processing engine speed. The procedure is able to diagnose the absence of combustion (due for example to a misfire or a misfuel) as well as abnormal combustions that do not necessarily involve lack of combustion, with, the accuracy needed for on-board use. Control interventions to injection and ignition time commands of one or more cylinders should, in most cases, be able to re-establish torque production uniformity.


Author(s):  
Егор Андреевич Рябцев

В настоящее время об энергоэффективности насосного агрегата судят на основании результатов приемо-сдаточных испытаний - по значению КПД в номинальной рабочей точке. Опыт эксплуатации насосов на объектах нефтепроводного транспорта показывает, что реальная рабочая точка насоса отличается от номинальной. Данное расхождение объясняется вариативностью режимов работы насосных установок. В этой связи предлагается оценивать энергоэффективность насоса по результатам испытаний исходя из реальных условий функционирования насосного оборудования - в рабочем диапазоне, необходимом для перекачки нефти (нефтепродуктов) с учетом изменения потребной подачи и напора гидросистемы. Существующие методики оценки энергоэффективности насосов в рабочем диапазоне имеют ограничения для применения на объектах магистральных нефтепроводов. В настоящей работе предлагается использовать с этой целью критериальную оценку по характерным точкам в диапазоне подач. Сформулированы основные положения разработанной методики. Сделан вывод о том, что ее применение при приемо-сдаточных испытаниях позволит улучшить качество оборудования, поставляемого на производственные объекты, а следовательно, энергоэффективность НПС. Currently, energy efficiency of a pumping unit is assessed based on the acceptance test results according to the efficiency value at the nominal working point. The experience of operating pumps at oil pipeline transportation facilities shows that the actual working point of the pump differs from the nominal one. This discrepancy is explained by the variability of the pumping unit process modes. In this connection, it is proposed to evaluate pump’s energy efficiency based on the test results under the actual operating conditions of the pumping equipment, in the operating range required for pumping oil (petroleum products), taking into account the change in the required supply and hydraulic system pressure. The existing methods for assessing energy efficiency of pumps in the operating range have limitations for use at main oil pipeline facilities. This study proposes to use a criteria-based assessment using characteristic points in the supply range for this purpose. The basic principles of the developed method are formulated. It is concluded that its application during the acceptance tests will improve the quality of equipment supplied to production facilities, and hence the PS energy efficiency.


2015 ◽  
Vol 809-810 ◽  
pp. 688-693 ◽  
Author(s):  
Răzvan Corneliu Lefter ◽  
Daniela Popescu

District heating systems operating under dynamic conditions without proper hydronic balancing is one of the causes of discomfort for heating consumers. Moreover, from the point of view of producers, unbalanced heating networks generate low energy efficiency. The study analyzes the operation conditions in three cases, on the same network: the first simulates the operating conditions of the network without balancing, the second when just balancing valves set to corresponding nominal flow rate values are used and the third when balancing valves and differential pressure controllers are used, the so-called total balancing method. Results highlight the importance of the hydraulic balancing under steady state and dynamic operating conditions, as a source to increase the energy efficiency and assure thermal comfort by better distribution of fluid flow rates between consumers.


2021 ◽  
Vol 54 (4) ◽  
pp. 22-29
Author(s):  
Marina V. Zimina ◽  
Anastasia P. Gruzdeva ◽  
Lyubov′ L. Chagina

The article analyses the existing methods of studying the characteristics of bending stiffness. Topicality of improving the methodology for assessing and predicting bending stiffness in relation to the operating conditions of the studied contingent of consumers is substantiated. The methodology includes two main stages – an experimental study of the stiffness characteristics taking into account the characteristics of the range under study and a stage of forecasting the design solutions of the product. Comprehensive experimen-tal studies of the bending characteristics of modern fabrics of the jacket assortment for adaptive clothing of people with motor disabilities have been carried out. For an objective assessment of wear during use, the proposed method implements an additional forced bending of samples in opposite directions in order to bring the test results closer to real operating conditions. The results of experimental studies can be used at the design stage to predict the bending characteristics of the fabrics of the jacket assortment of clothing for people with motor disabilities.


2021 ◽  
Vol 136 (5) ◽  
pp. 19-22
Author(s):  
V. Ch. Ten ◽  
◽  
L. G. Lunkova ◽  
G. S. Melnikov ◽  
◽  
...  

The aim of the work is to study the energy efficiency of the «Arctic Cascade» technology used in the Russian project «Yamal-LNG». The company uses the reserves of the Yuzhno-Tambeyskoye field as a resource base. The relevance of the study is due to the imperfection of technological schemes in terms of the energy efficiency of liquefaction processes, as well as the lack of experience in operating LNG projects in Arctic conditions. This work presents the calculation of energy costs in the production of liquefied natural gas using the «Arctic cascade» technology using the example of the operating conditions of the Yamal-LNG plant, based on the model built in the Aspen Hysys. Modeling the technological scheme made it possible to apply the obtained data for the calculation, as a result of which the specific energy consumption of 230,78 kWh/t per ton of product was determined. It turned out that the technological solution has a significant drawback: a fairly high boil-off gas yield of 15.72% was revealed. This fact reduces the efficiency of the plant and leads to the need to re-feed it into the liquefaction cycle.


Author(s):  
В. В. Руденко ◽  
И. В. Калужинов ◽  
Н. А. Андрущенко

The presence in operation of many prototypes of UAVs with propeller propellers, the use of such devices at relatively low altitudes and flight speeds makes the problem of noise reduction from UAVs urgent both from the point of view of acoustic imperceptibility and ecology.The aim of the work is to determine a set of methods that help to reduce the visibility of UAVs in the acoustic range. It is shown that the main source of noise from the UAV on the ground is the power plant, which includes the engine and the propeller. The parameters of the power plants influencing the processes that determine the acoustic signature of the UAV were investigated. A comprehensive analysis of the factors affecting visibility was carried out. The power plants include two-stroke and four-stroke engines, internal combustion and two-blade propellers. The use of silencers on the exhaust of the internal combustion engine was considered. The spectral characteristics of the acoustic fields of the propeller-driven power plants for the operating sample of the UAV "Eco" were obtained. The measurements were carried out in one-third octave and 1/48 octave frequency bands under static conditions. The venue is the KhAI airfield. Note that the propellers that were part of the power plants operated at Reynolds numbers (Re0,75<2*105), which can significantly affect its aerodynamic and acoustic characteristics. It is shown that when choosing a UAV control system, one should take into account the fact that two-stroke piston engines are the dominant source in the noise of propeller-driven control systems in the absence of a hood and mufflers in the intake and exhaust tracts. The use of a four-stroke internal combustion engine significantly reduces the noise of the control system. In the general case, the position of the boundaries of the zone of acoustic visibility of a UAV at the location of the observer is determined by the ratio between the intensity of acoustic radiation perceived by the observer from the UAV and the intensity of sound corresponding to the natural acoustic background and depends on the degree of manifestation of acoustic effects accompanying the propagation of sound in a turbulent atmosphere - the refraction of sound waves. Absorption and dissipation of acoustic energy. The calculation and comparison of the UAV detection range was carried out taking into account the existing natural maskers.The results of experimental studies are presented that allow assessing the degree of acoustic signature of the UAV. A set of measures aimed at reducing the intensity of the acoustic signature of the UAV in various regions of the radiation spectrum has been determined.


Author(s):  
Marat R. Lukmanov ◽  
◽  
Sergey L. Semin ◽  
Pavel V. Fedorov ◽  
◽  
...  

The challenges of increasing the energy efficiency of the economy as a whole and of certain production sectors in particular are a priority both in our country and abroad. As part of the energy policy of the Russian Federation to reduce the specific energy intensity of enterprises in the oil transportation system, Transneft PJSC developed and implements the energy saving and energy efficiency improvement Program. The application of energy-saving technologies allowed the company to significantly reduce operating costs and emissions of harmful substances. At the same time, further reduction of energy costs is complicated for objective reasons. The objective of this article is to present additional methods to improve the energy efficiency of oil transportation by the example of the organizational structure of Transneft. Possibilities to reduce energy costs in the organization of the operating services, planning and execution of work to eliminate defects and preparatory work for the scheduled shutdown of the pipeline, the use of pumping equipment, including pumps with variable speed drive, the use of various pipelines layouts, changing the volume of oil entering the pipeline system and increase its viscosity.


Sign in / Sign up

Export Citation Format

Share Document