scholarly journals Research on Automatic Train Driving Based on Fuzzy Proportion Integration Differentiation Iterative Control

2021 ◽  
Vol 283 ◽  
pp. 02021
Author(s):  
Zhengsheng Qi ◽  
Bohong Liu ◽  
Mengmeng Wang

Automatic train driving system is an important subsystem of train operation control system, which can provide passengers with punctual, accurate, efficient and fast transportation services. At the same time, the accurate stop, comfort and stability of the train is an important index to measure the control performance of the train automatic driving system, and the accurate stop plays a vital role in the efficient operation of the train. Based on the characteristics of high-speed train parking, an accurate parking algorithm based on fuzzy PID iterative control was proposed to solve the problem of low parking accuracy caused by frequent switching of control output. On the basis of solving the differential equation of the train braking model, the gradient of the system is obtained, and then the learning parameters of the convergence condition are obtained to overcome the repeated uncertainty in the stopping stage. The simulation results show that the fuzzy PID iterative control for asymptotic stability is an effective method to realize the precise parking of trains, and has strong robustness against the train parameter uncertainties and external disturbances.

2013 ◽  
Vol 38 (4) ◽  
pp. 441-445 ◽  
Author(s):  
Chang-sheng XIE ◽  
Pin JIANG ◽  
Wen-wu HU ◽  
Ya-hui LUO ◽  
Yan-li TONG

2021 ◽  
Vol 54 (3-4) ◽  
pp. 360-373
Author(s):  
Hong Wang ◽  
Mingqin Zhang ◽  
Ruijun Zhang ◽  
Lixin Liu

In order to effectively suppress horizontal vibration of the ultra-high-speed elevator car system. Firstly, considering the nonlinearity of guide shoe, parameter uncertainties, and uncertain external disturbances of the elevator car system, a more practical active control model for horizontal vibration of the 4-DOF ultra-high-speed elevator car system is constructed and the rationality of the established model is verified by real elevator experiment. Secondly, a predictive sliding mode controller based on adaptive fuzzy (PSMC-AF) is proposed to reduce the horizontal vibration of the car system, the predictive sliding mode control law is achieved by optimizing the predictive sliding mode performance index. Simultaneously, in order to decrease the influence of uncertainty of the car system, a fuzzy logic system (FLS) is designed to approximate the compound uncertain disturbance term (CUDT) on-line. Furthermore, the continuous smooth hyperbolic tangent function (HTF) is introduced into the sliding mode switching term to compensate the fuzzy approximation error. The adaptive laws are designed to estimate the error gain and slope parameter, so as to increase the robustness of the system. Finally, numerical simulations are conducted on some representative guide rail excitations and the results are compared to the existing solution and passive system. The analysis has confirmed the effectiveness and robustness of the proposed control method.


2021 ◽  
pp. 107754632110033
Author(s):  
Gang Xiao ◽  
Qinwen Yang ◽  
Fan Yang ◽  
Tao Liu ◽  
Tao Li ◽  
...  

Automatic driving of trains can significantly reduce the energy cost and enhance the operating efficiency and safety. The automatic train driving system has to be an embedded system that can run onboard with low power, which necessitates an efficient inference model. In this article, a level-wise driving knowledge induction approach is proposed for embedded automatic train driving systems. The coincident driving patterns in the records of drivers with different experience levels suggest the suitability of a driving experience knowledge rule induction approach. We design a two-level learning approach to obtain both the driving experience pattern in fuzzy rule-based knowledge form and the detailed parameters of velocity and gear by regression learning methods. With 8.93% energy consumption reduction compared with average human drivers, the experiments indicate the effectiveness of our approach.


2012 ◽  
Vol 591-593 ◽  
pp. 251-258
Author(s):  
Wen Wei Wang ◽  
Cheng Lin ◽  
Wan Ke Cao ◽  
Jiao Yang Chen

Multi-motor wheel independent driving technology is an important direction of electric vehicle(EV). Based on the analysis of the features of existing independent driving system of electric vehicle, a new dual-motor independent driving system configuration was designed. Complete parameters matching and simulation analysis of the system include motor, reducer, and battery. Distributed control network architecture based on high-speed CAN bus was developed, and information scheduling was optimized and real-time predictability was analyzed based on the rate monotonic (RM) algorithm and jitter margin index. The vehicle lateral stability control was achieved based on coordinated electro-hydraulic active braking. Based on the new dual-motor independent driving system, a new battery electric car was designed and tested. The results show that the vehicle has excellent dynamic and economic performance.


2021 ◽  
Vol 11 (22) ◽  
pp. 11032
Author(s):  
Haokun Song ◽  
Fuquan Zhao ◽  
Zongwei Liu

There are big differences between the driving behaviors of intelligent connected vehicles (ICVs) and traditional human-driven vehicles (HVs). ICVs will be mixed with HVs on roads for a long time in the future. Different intelligent functions and different driving styles will affect the condition of traffic flow, thereby changing traffic efficiency and emissions. In this paper, we focus on China’s expressways and secondary motorways, and the impacts of the ‘single-lane automatic driving system’ (SLADS) on traffic delay, road capacity and carbon dioxide (CO2) emissions were studied under different ICV penetration rates. Driving styles were regarded as important factors for scenario analysis. We found that with higher volume input, SLADS has an optimizing effect on traffic efficiency and CO2 emissions generally, which will be more significant as the ICV penetration rate increases. Additionally, enhancing the aggressiveness of driving behavior appropriately is an effective way to amplify the benefits of SLADS.


2021 ◽  
Author(s):  
Md Forhad Ebn Anwar

Collision of vehicles in highways are very frequent. Because of high speed (more than 100 km/hour), the momentum of collision is too high that leads sever casualty. Automatic Driving Assistance system can assist the vehicle operators to take decision based on realistic practical calculation on safety measures. It is always better to have third eye working parallel with human to avoid road accident. There are several technologies used to develop perfect driving assistance system to achieve higher accuracy in detection, identification and distance measurement of obstacles where vision based system is one of them. Mono-vision system provides cheap and fast solution rather stereo vision. This project work conducted with objective to comprehend computational complexity in implementation of mono-vison camera based object detection where system will generate warning if the detected object has a motion towards target. Processing and analyzing of captured video image is the focused mechanism of implementation and used internal image generator module to mimic actual video camera. Appeared size of the shape of object considered for the decision making. The simulated image pattern can change it’s dimension to represent vehicle movement in one direction (Back and forth). In this work the on-chip car image generation sub-system was proposed designed and partially implemented on the base of the FPGA where Xilinx Zynq-7010 (ZYNQ XC7Z010-1CLG400C) FPGA development board used. Keyword: Computer Vision, mono vision, image processing on FPGA, Automatic Driving Assistance, Vehicle Detection.


2020 ◽  
Author(s):  
Eszter Szemerédi ◽  
Tibor Tatay

AbstractFor the further development and more efficient operation of the sharing economy, a fast and inexpensive peer-to-peer payment system is an essential element. The aim of this study is to outline a prototype that ensures the automation and decentralization of processes through smart contracts without blockchain technology. The model has been built based on the narrative that a community currency created through smart contracts can promote genuine practices of sharing as opposed to the profit-oriented approach that most of the currently operating sharing economy platforms have. Features of the model, such as ease of use, high-speed transactions without transaction cost are benefits that can provide a more efficient alternative to the traditional or to the cryptocurrency-based centralized sharing economy platforms.


2020 ◽  
Author(s):  
Rosa Maria Badani Prado ◽  
Satish Mishra ◽  
Buckston Morgan ◽  
Rangana Wijayapala ◽  
Seyed Meysam Hashemnejad ◽  
...  

Many biological species apply the power amplification mechanism for locomotion, feeding, and protection. In power amplification, a biological system rapidly releases stored-energy by achieving a very high velocity over a short period of time, resulting in high power output. Such power amplification allows insects such as locust to jump and Mantis shrimp to kill prey by its appendage strike. Biological elastomeric polymers such as resilin play a vital role in the power amplification process because of their high stretchability and resilience. In synthetic materials, although<br>crosslinked rubbers display high stretchability and resilience, such is difficult to achieve in the water-containing systems such as in hydrogels, commonly considered materials for mimicking biological tissues. Here, we have used a simple free-radical polymerization of acrylic acid (AAc), methacrylamide (MAAm), and polypropylene glycol diacrylate (PPGDA) to obtain hydrogels. In these gels, the polymerized AAc and MAAm act as hydrophilic blocks and PPG as hydrophobic, and the gel structure resemble that of resilin consisting of hydrophilic and hydrophobic components. The bioinspired gels display very high stretchability, as high as eight times the original length, and greater than 90% resilience. In addition, the gel samples can reach a retraction velocity of 16 m/s with an acceleration of 4X10^3 m/s2. These values are similar or better than those observed in water containing biological systems, such as appendage strikes in Mantis shrimp, etc. To the best of our knowledge, such performance has not been reported in the<br>literature for any water containing networks.


Sign in / Sign up

Export Citation Format

Share Document