scholarly journals Ultra High Energy Cosmic Rays: Origin, Composition and Spectrum

2019 ◽  
Vol 209 ◽  
pp. 01018
Author(s):  
Roberto Aloisio

The physics of Ultra High Energy Cosmic Rays will be reviewed, discussing the latest experimental results and theoretical models aiming at explaining the observations in terms of spectra, mass composition and possible sources. It will be also discussed the emission of secondary particles such as neutrinos and gamma rays produced by the interaction of Ultra High Energy Cosmic Rays with astrophysical photon backgrounds. The content of the present proceeding paper is mainly based on the review papers [1, 2].

2012 ◽  
Vol 18 ◽  
pp. 221-229
Author(s):  
◽  
J. R. T. DE MELLO NETO

We present the status and the recent measurements from the Pierre Auger Observatory. The energy spectrum is described and its features discussed. We report searches for anisotropy of cosmic rays arrival directions in large scales and through correlation with catalogues of celestial objects. The measurement of the cross section proton-air is discussed. Finally, the mass composition is addressed with the measurements of the variation of the depth of shower maximum with energy and with the muon density at ground.


2010 ◽  
Vol 19 (08n10) ◽  
pp. 1275-1283
Author(s):  
◽  
H. SAGAWA

The Telescope Array (TA) is the largest hybrid detector in the northern hemisphere, which consists of an array of surface detectors (SD) and fluorescence detectors (FD), to explore the origin of ultra-high energy cosmic rays (UHECR) by measuring energy, arrival direction, mass composition, and other characteristics of UHECRs. Here we present the status and preliminary results based on the first data set of the experiment.


2013 ◽  
Vol 53 (A) ◽  
pp. 698-702
Author(s):  
Aurelio F. Grillo

The status of the Mass Composition measurements of Ultra High Energy Cosmic Rays is presented, with emphasis on the results from the Fluorescence Detector of the Pierre Auger Observatory. Possible consequences of the present measurements are discussed, both on the particle physics and astrophysics aspects.


2018 ◽  
Vol 191 ◽  
pp. 08008
Author(s):  
Gašper Kukec Mezek

Ultra-high-energy cosmic rays (UHECRs) are highly energetic particles with []EeV energies, exceeding the capabilities of man-made colliders. They hold information on extreme astrophysical processes that create them and the medium they traverse on their way towards Earth. However, their mass composition at such energies is still unclear, because data interpretation depends on our choice of high energy hadronic interaction models. With its hybrid detection method, the Pierre Auger Observatory has the possibility to detect extensive air showers with an array of surface water-Cherenkov stations (SD) and fluorescence telescopes (FD). We present recent mass composition results from the Pierre Auger Collaboration using observational parameters from SD and FD measurements. Using the full dataset of the Pierre Auger Observatory, implications on composition can be made for energies above [1017.2]eV.


2010 ◽  
Vol 25 (18) ◽  
pp. 1467-1481 ◽  
Author(s):  
TODOR STANEV

We introduce the highest energy cosmic rays and briefly review the powerful astrophysical objects where they could be accelerated. We then introduce the interactions of different cosmic ray particles with the photon fields of the Universe and the formation of the cosmic ray spectra observed at Earth. The last topic is the production of secondary gamma rays and neutrinos in the interactions of the ultrahigh energy cosmic rays.


Sign in / Sign up

Export Citation Format

Share Document