scholarly journals Lightweight WLCG Sites

2019 ◽  
Vol 214 ◽  
pp. 07019 ◽  
Author(s):  
Mayank Sharma ◽  
Maarten Litmaath ◽  
Eraldo Silva Junior ◽  
Renato Santana

This article describes a new framework, called SIMPLE, for settingup and maintaining classic WLCG sites with minimal operational efforts and insights needed into the WLCG middleware. The framework provides a single common interface to install and configure any of its supported grid services, such as Compute Elements, Batch Systems, Worker Nodes and miscellaneous middleware packages. It leverages modern container orchestration tools like Kubernetes, Docker Swarm, and confiuration management tools like Puppet, Ansible, to automate deployment of the WLCG services on behalf of a site admin. The framework is modular and extensible by design. Therefore, it is easy to add support for more grid services as well as infrastructure automation tools to accommodate diverse scenarios at different sites. We provide insight into the design of the framework and our efforts towards development, release and deployment of its first implementation featuring CREAM E, TORQUE Batch System and TORQUE based Worker Nodes.

2020 ◽  
Vol 245 ◽  
pp. 07017
Author(s):  
Mayank Sharma ◽  
Eraldo Silva Junior ◽  
Boris Iliev Vasilev ◽  
Maarten Litmaath ◽  
Renato Santana

The Worldwide LHC Computing Grid (WLCG) currently has about 170 sites. In order to support WLCG workloads, each site has to deploy and maintain a number of possibly complex grid services. Quite often, site managers require assistance of WLCG experts, for example when new software versions need to be deployed. Modern configuration management (e.g. Puppet, Ansible), container orchestration (e.g. Docker Swarm, Kubernetes) and containerization technologies (e.g. Docker, Podman) can help make such activities more lightweight by means of packaging sensible configurations of grid services and providing simple mechanisms to distribute and deploy them across the infrastructure available at a site. This article describes the SIMPLE project: a Solution for Installation, Management and Provisioning of Lightweight Elements. The SIMPLE framework leverages modern infrastructure management tools to deploy containerized grid services, such as popular compute elements (e.g. HTCondor, ARC), batch systems (e.g. HTCondor, Slurm), worker nodes, etc. Its architecture follows principles of sustainability, scalability and extensibility. We describe how system administrators can use the framework, as well as the first results, featuring the migration of computing resources to HTCondor at 2 sites. We conclude with an outlook on further developments.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 738
Author(s):  
Nicola Rossi ◽  
Mario Bačić ◽  
Meho Saša Kovačević ◽  
Lovorka Librić

The design code Eurocode 7 relies on semi-probabilistic calculation procedures, through utilization of the soil parameters obtained by in situ and laboratory tests, or by the means of transformation models. To reach a prescribed safety margin, the inherent soil parameter variability is accounted for through the application of partial factors to either soil parameters directly or to the resistance. However, considering several sources of geotechnical uncertainty, including the inherent soil variability, measurement error and transformation uncertainty, full probabilistic analyses should be implemented to directly consider the site-specific variability. This paper presents the procedure of developing fragility curves for levee slope stability and piping as failure mechanisms that lead to larger breaches, where a direct influence of the flood event intensity on the probability of failure is calculated. A range of fragility curve sets is presented, considering the variability of levee material properties and varying durations of the flood event, thus providing crucial insight into the vulnerability of the levee exposed to rising water levels. The procedure is applied to the River Drava levee, a site which has shown a continuous trend of increased water levels in recent years.


Author(s):  
Ellen M. Whitehead ◽  
Allan Farrell ◽  
Jenifer L. Bratter

ABSTRACT The racial composition of couples is a salient indicator of race’s impact on mate selection, but how well do those in intimate partnerships know the racial identities of their partners? While prior research has revealed that an individual’s race may be perceived differently than how they identify, most of what is known comes from brief interactions, with less information on established relationships. This study examines whether discrepancies in the reports of a person’s race or ethnicity can be identified even within intimate relationships, as well as which relational, social, and attitudinal factors are predictive of divergent or concordant reports. We draw on the Fragile Families and Child Wellbeing Study (n=3467), a U.S.-based dataset that uniquely provides both the father’s self-reported race and Hispanic origin and the mother’s report of the father’s race and ethnicity. We compare reports of the father’s race/Hispanic origin from both parents to assess the extent of mismatch, and we distinguish between whether mothers view the father’s race as similar to or different from her own. We find roughly 14% of mothers provide a race and Hispanic origin that is inconsistent with the father’s report, with a large share reflecting differences in the self-identified and perceived race of fathers who are reported as Hispanic. Among mismatched reports, mothers are more likely to report a race/ethnicity for the father that matches her own, depressing the number reporting interracial unions. Perceptions of racial homogamy are especially likely when mothers view racial sameness as important to marriage. Further, mismatches are more common in the midst of weak relational ties (i.e. non-marital relationships) and are less common when both parents are college-educated. These findings reveal that intimate unions are a site where race is socially constructed and provide insight into how norms of endogamy manifest within formed relationships.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiqing Du ◽  
Marie-Kristin von Wrisberg ◽  
Burak Gulen ◽  
Matthias Stahl ◽  
Christian Pett ◽  
...  

AbstractLegionella pneumophila infects eukaryotic cells by forming a replicative organelle – the Legionella containing vacuole. During this process, the bacterial protein DrrA/SidM is secreted and manipulates the activity and post-translational modification (PTM) states of the vesicular trafficking regulator Rab1. As a result, Rab1 is modified with an adenosine monophosphate (AMP), and this process is referred to as AMPylation. Here, we use a chemical approach to stabilise low-affinity Rab:DrrA complexes in a site-specific manner to gain insight into the molecular basis of the interaction between the Rab protein and the AMPylation domain of DrrA. The crystal structure of the Rab:DrrA complex reveals a previously unknown non-conventional Rab-binding site (NC-RBS). Biochemical characterisation demonstrates allosteric stimulation of the AMPylation activity of DrrA via Rab binding to the NC-RBS. We speculate that allosteric control of DrrA could in principle prevent random and potentially cytotoxic AMPylation in the host, thereby perhaps ensuring efficient infection by Legionella.


2014 ◽  
Vol 70 (a1) ◽  
pp. C207-C207
Author(s):  
Yun Chen ◽  
Shu Feng ◽  
Katsuhiko Kamada ◽  
Han Wang ◽  
Kai Tang ◽  
...  

As a typical endoribonuclease, YoeB mediates cellular adaptation in diverse bacteria by degrading mRNAs on its activation. Although the catalytic core of YoeB is thought to be identical to well-studied nucleases, this enzyme specifically targets mRNA substrates that are associated with ribosomes in vivo. However, the molecular mechanism of mRNA recognition and cleavage by YoeB, and the requirement of ribosome for its optimal activity, largely remain elusive. Here, we report the structure of YoeB bound to 70S ribosome in pre-cleavage state, revealing that both the 30S and 50S subunits participate in YoeB binding. The mRNA is recognized by the catalytic core of YoeB, of which the general base/acid (Glu46/His83) are within hydrogen-bonding distance to their reaction atoms, demonstrating an active conformation of YoeB on ribosome. Also, the mRNA orientation involves the universally conserved A1493 and G530 of 16S rRNA. In addition, mass spectrometry data indicated that YoeB cleaves mRNA following the second position at the A-site codon, resulting in a final product with a 3'–phosphate at the newly formed 3' end. Our results demonstrate a classical acid-base catalysis for YoeB-mediated RNA hydrolysis and provide insight into how the ribosome is essential for its specific activity.


2021 ◽  
Vol 251 ◽  
pp. 02052
Author(s):  
Robert Currie ◽  
Wenlong Yuan

To optimise the performance of distributed compute, smaller lightweight storage caches are needed which integrate with existing grid computing workflows. A good solution to provide lightweight storage caches is to use an XRootD-proxy cache. To support distributed lightweight XRootD proxy services across GridPP we have developed a centralised monitoring framework. With the v5 release of XRootD it is possible to build a monitoring framework which collects distributed caching metadata broadcast from multiple sites. To provide the best support for these distributed caches we have built a centralised monitoring service for XRootD storage instances within GridPP. This monitoring solution is built upon experiences presented by CMS in setting up a similar service as part of their AAA system. This new framework is designed to provide remote monitoring of the behaviour, performance, and reliability of distributed XRootD services across the UK. Effort has been made to simplify ease of deployment by remote site administrators. The result of this work is an interactive dashboard system which enables administrators to access real-time metrics on the performance of their lightweight storage systems. This monitoring framework is intended to supplement existing functionality and availability testing metrics by providing detailed information and logging from a site perspective.


2021 ◽  
pp. 456-473
Author(s):  
Joshua Shifrinson

When a great power rises, what strategies does it adopt and why? Despite substantial interest in these questions due to concerns surrounding the rise of China and concomitant decline of the United States, research on rising state grand strategy remains underdeveloped. Not only do analysts lack a consistent way of describing how risers’ grand strategies vary, but insight into the drivers of rising state strategy remains inchoate. Accordingly, this chapter analyzes existing research, highlights the problems rising states confront in crafting grand strategy, advances a new framework for discussing strategy, and suggests avenues for future research.


Author(s):  
Danijela Lalic ◽  
Ugljesa Marjanovic ◽  
Bojan Lalic

Today, technological achievements that significantly influence communication management are Social Networks in virtual environment. The latest research clearly indicates that this trend is going to last in the future. It is considered as a fact that there are many changes and innovations in the field of information and communication technologies during the past few decades. Development of communication technologies has provided a new framework for organizing corporate communication processes, both internally and externally. Channels for the transfer of relevant information had been faced with huge technological improvement, but fact analysis and former research do not provide insight into specific motivation patterns for usage of Social Networks among employees, nor into their influence on Communication Satisfaction within the organizations.


2019 ◽  
Vol 116 (16) ◽  
pp. 7813-7818 ◽  
Author(s):  
Jie Zhou ◽  
Laura Lancaster ◽  
John Paul Donohue ◽  
Harry F. Noller

The elongation factor G (EF-G)–catalyzed translocation of mRNA and tRNA through the ribosome is essential for vacating the ribosomal A site for the next incoming aminoacyl-tRNA, while precisely maintaining the translational reading frame. Here, the 3.2-Å crystal structure of a ribosome translocation intermediate complex containing mRNA and two tRNAs, formed in the absence of EF-G or GTP, provides insight into the respective roles of EF-G and the ribosome in translocation. Unexpectedly, the head domain of the 30S subunit is rotated by 21°, creating a ribosomal conformation closely resembling the two-tRNA chimeric hybrid state that was previously observed only in the presence of bound EF-G. The two tRNAs have moved spontaneously from their A/A and P/P binding states into ap/P and pe/E states, in which their anticodon loops are bound between the 30S body domain and its rotated head domain, while their acceptor ends have moved fully into the 50S P and E sites, respectively. Remarkably, the A-site tRNA translocates fully into the classical P-site position. Although the mRNA also undergoes movement, codon–anticodon interaction is disrupted in the absence of EF-G, resulting in slippage of the translational reading frame. We conclude that, although movement of both tRNAs and mRNA (along with rotation of the 30S head domain) can occur in the absence of EF-G and GTP, EF-G is essential for enforcing coupled movement of the tRNAs and their mRNA codons to maintain the reading frame.


Sign in / Sign up

Export Citation Format

Share Document