scholarly journals Lattice calculation of the hadronic leading order contribution to the muon g − 2

2020 ◽  
Vol 234 ◽  
pp. 01016
Author(s):  
Hartmut Wittig ◽  
Antoine Gérardin ◽  
Marco Cè ◽  
Georg von Hippel ◽  
Ben Hörz ◽  
...  

The persistent discrepancy of about 3.5 standard deviations between the experimental measurement and the Standard Model prediction for the muon anomalous magnetic moment, aµ, is one of the most promising hints for the possible existence of new physics. Here we report on our lattice QCD calculation of the hadronic vacuum polarisation contribution $ a_\mu ^{{\rm{hvp}}} $, based on gauge ensembles with Nf = 2 + 1 flavours of O(a) improved Wilson quarks. We address the conceptual and numerical challenges that one encounters along the way to a sub-percent determination of the hadronic vacuum polarisation contribution. The current status of lattice calculations of $ a_\mu ^{{\rm{hvp}}} $ is presented by performing a detailed comparison with the results from other groups.

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Gorazd Cvetič ◽  
C. S. Kim ◽  
Donghun Lee ◽  
Dibyakrupa Sahoo

Abstract The disagreement between the standard model prediction and the experimental measurement of muon anomalous magnetic moment can be alleviated by invoking an additional particle which is either a vector boson (X1) or a scalar (X0). This new particle, with the mass mX ≲ 2mμ, can be searched for in the decay J/ψ → μ−μ+X, where X is missing. Our numerical study shows that the search is quite feasible at the BESIII experiment in the parameter space allowed by muon g − 2 measurements.


2018 ◽  
Vol 179 ◽  
pp. 01016
Author(s):  
Daisuke Nomura

We calculate the Standard Model (SM) prediction for the muon anomalous magnetic moment. By using the latest experimental data for e+e- → hadrons as input to dispersive integrals, we obtain the values of the leading order (LO) and the next-to-leading-order (NLO) hadronic vacuum polarisation contributions as ahad, LO VPμ = (693:27 ± 2:46) × 10-10 and ahad, NLO VP μ = (_9.82 ± 0:04) × 1010-10, respectively. When combined with other contributions to the SM prediction, we obtain aμ(SM) = (11659182:05 ± 3.56) × 10-10; which is deviated from the experimental value by Δaμ(exp) _ aμ(SM) = (27.05 ± 7.26) × 10-10. This means that there is a 3.7 σ discrepancy between the experimental value and the SM prediction. We also discuss another closely related quantity, the running QED coupling at the Z-pole, α(M2 Z). By using the same e+e- → hadrons data as input, our result for the 5-flavour quark contribution to the running QED coupling at the Z pole is Δ(5)had(M2 Z) = (276.11 ± 1.11) × 10-4, from which we obtain Δ(M2 Z) = 128.946 ± 0.015.


2000 ◽  
Vol 50 (1) ◽  
pp. 249-297 ◽  
Author(s):  
A.R. Barker ◽  
S.H. Kettell

▪ Abstract  We review the current status of the field of rare kaon decays. The study of rare kaon decays has played a key role in the development of the standard model, and the field continues to have significant impact. The two areas of greatest import are the search for physics beyond the standard model and the determination of fundamental standard-model parameters. Due to the exquisite sensitivity of rare kaon decay experiments, searches for new physics can probe very high mass scales. Studies of the K → π ν[Formula: see text] modes in particular, where the first event has recently been seen, will permit tests of the standard-model picture of quark mixing and CP violation.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Yasuhiro Okada ◽  
Luca Panizzi

This work provides an overview on the current status of phenomenology and searches for heavy vector-like quarks, which are predicted in many models of new physics beyond the Standard Model. Searches at Tevatron and at the LHC, here listed and shortly described, have not found any evidence for new heavy fermionic states (either chiral or vector-like) and have therefore posed strong bounds on their masses: depending on specific assumptions on the interactions and on the observed final state, vector-like quarks with masses up to roughly 400–600 GeV have been excluded by all experiments. In order to be as simple and model independent as possible, the chosen framework for the phenomenological analysis is an effective model with the addition of a vector-like quark representation (singlet, doublet, or triplet underSU(2)L) which couples through Yukawa interactions with all SM families. The relevance of different observables for the determination of bounds on mixing parameters is then discussed and a complete overview of possible two body final states for every vector-like quark is provided, including their subsequent decay into SM particles. A list and short description of phenomenological analyses present in the literature are also provided for reference purposes.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Jason Aebischer ◽  
Benjamín Grinstein

Abstract Applying an operator product expansion approach we update the Standard Model prediction of the Bc lifetime from over 20 years ago. The non-perturbative velocity expansion is carried out up to third order in the relative velocity of the heavy quarks. The scheme dependence is studied using three different mass schemes for the $$ \overline{b} $$ b ¯ and c quarks, resulting in three different values consistent with each other and with experiment. Special focus has been laid on renormalon cancellation in the computation. Uncertainties resulting from scale dependence, neglecting the strange quark mass, non-perturbative matrix elements and parametric uncertainties are discussed in detail. The resulting uncertainties are still rather large compared to the experimental ones, and therefore do not allow for clear-cut conclusions concerning New Physics effects in the Bc decay.


2018 ◽  
Vol 33 (32) ◽  
pp. 1850194
Author(s):  
Aritra Biswas ◽  
Sanjoy Mandal ◽  
Nita Sinha

We show that for a heavy vector-like quark model with a down type isosinglet, branching ratio for [Formula: see text] decay is enhanced by more than [Formula: see text] as compared to that in the Standard model when QCD corrections to next-to-leading order are incorporated. In a left–right symmetric model (LRSM) along with a heavy vector-like fermion, enhancement of this order can be achieved at the bare (QCD uncorrected) level itself. We propose that a measurement of the photon polarization could be used to signal the presence of such new physics in spite of the large long distance effects. We find that there is a large region within the allowed parameter space of the model with a vector-like quark and an additional left–right symmetry, where, the photon polarization can be dominantly right-handed.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Alexander Lind ◽  
Andrea Banfi

AbstractWe present H1jet, a fast code that computes the total cross section and differential distribution in the transverse momentum of a colour singlet. In its current version, the program implements only leading-order $$2\rightarrow 1$$ 2 → 1 and $$2\rightarrow 2$$ 2 → 2 processes, but could be extended to higher orders. We discuss the processes implemented in H1jet, give detailed instructions on how to implement new processes, and perform comparisons to existing codes. This tool, mainly designed for theorists, can be fruitfully used to assess deviations of selected new physics models from the Standard Model behaviour, as well as to quickly obtain distributions of relevance for Standard Model phenomenology.


2020 ◽  
Vol 35 (01) ◽  
pp. 1930018
Author(s):  
Diego Guadagnoli

This paper describes the work pursued in the years 2008–2013 on improving the Standard Model prediction of selected flavor-physics observables. The latter includes: (1) [Formula: see text], that quantifies indirect CP violation in the [Formula: see text] system and (2) the very rare decay [Formula: see text], recently measured at the LHC. Concerning point (1), the paper describes our reappraisal of the long-distance contributions to [Formula: see text],[Formula: see text] that have permitted to unveil a potential tension between CP violation in the [Formula: see text]- and [Formula: see text]-system. Concerning point (2), the paper gives a detailed account of various systematic effects pointed out in Ref. 4 and affecting the Standard Model [Formula: see text] decay rate at the level of 10% — hence large enough to be potentially misinterpreted as nonstandard physics, if not properly included. The paper further describes the multifaceted importance of the [Formula: see text] decays as new physics probes, for instance how they compare with [Formula: see text]-peak observables at LEP, following the effective-theory approach of Ref. 5. Both cases (1) and (2) offer clear examples in which the pursuit of precision in Standard Model predictions offered potential avenues to discovery. Finally, this paper describes the impact of the above results on the literature, and what is the further progress to be expected on these and related observables.


2015 ◽  
Vol 8 (3) ◽  
Author(s):  
Shelley A. Page

The weak charge of the proton has been determined for the first time via a high precision electron-proton scattering experiment, Qweak, carried out at Jefferson Laboratory (JLab) in Newport News, USA. The weak charge is a basic property in subatomic physics, analogous to electric charge. The Standard Model makes a prediction for the weak charges of protons and other particles. First results described here are based on an initial 4% of the data set reported in 20131, with the ultimate goal of the experiment being a high precision Standard Model test conducted with the full Qweak data set. These initial results are consistent with the Standard Model prediction; they serve as an important first determination of the proton’s weak charge and a proof of principle that the ultimate goals are within reach.


Sign in / Sign up

Export Citation Format

Share Document