scholarly journals Joint DOD and DOA Estimation Using Reduced-Capon Method in Bistatic MIMO Array

Author(s):  
Wentao Shi ◽  
Qunfei Zhang ◽  
Chengbing He

In order to resolve the problem of joint direction of departure (DOD) and direction of arrival (DOA) estimation in bistatic MIMO array, a dimensional reduced-Capon method based on Taylor series expansion and signal subspace is proposed in this paper. Firstly, the Taylor series expansion of the steering vector is used to reduce the two-dimensional (2D) spectrum peak searching of Capon method to one-dimensional searching. Then, the DOD estimator can be achieved via Lagrange multiplier by one-dimension search. Finally, the steering vector of DOA corresponding to the DOD estimator is achieved and the DOA can be estimated. Hence, the estimated DOD and DOA are obtained automatically paired. And also, the proposed method can avoid the high computational complexity of MIMO Capon method. Simulation results are presented to illustrate the effectiveness of the proposed method.

Author(s):  
Antonio Carlos Foltran ◽  
Carlos Henrique Marchi ◽  
Luís Mauro Moura

Author(s):  
Ruifei Peng ◽  
Haitian Yang ◽  
Yanni Xue

A package solution is presented for the full-scale bounds estimation of temperature in the nonlinear transient heat transfer problems with small or large uncertainties. When the interval scale is relatively small, an efficient Taylor series expansion-based bounds estimation of temperature is stressed on the acquirement of first and second-order derivatives of temperature with high fidelity. When the interval scale is relatively large, an optimization-based approach in conjunction with a dimension-adaptive sparse grid (DSG) surrogate is developed for the bounds estimation of temperature, and the heavy computational burden of repeated deterministic solutions of nonlinear transient heat transfer problems can be efficiently alleviated by the DSG surrogate. A temporally piecewise adaptive algorithm with high fidelity is employed to gain the deterministic solution of temperature, and is further developed for recursive adaptive computing of the first and second-order derivatives of temperature. Therefore, the implementation of Taylor series expansion and the construction of DSG surrogate are underpinned by a reliable numerical platform. The parallelization is utilized for the construction of DSG surrogate for further acceleration. The accuracy and efficiency of the proposed approaches are demonstrated by two numerical examples.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3242 ◽  
Author(s):  
Ke Wei Zhang ◽  
Gang Hao ◽  
Shu Li Sun

The multi-sensor information fusion particle filter (PF) has been put forward for nonlinear systems with correlated noises. The proposed algorithm uses the Taylor series expansion method, which makes the nonlinear measurement functions have a linear relationship by the intermediary function. A weighted measurement fusion PF (WMF-PF) was put forward for systems with correlated noises by applying the full rank decomposition and the weighted least square theory. Compared with the augmented optimal centralized fusion particle filter (CF-PF), it could greatly reduce the amount of calculation. Moreover, it showed asymptotic optimality as the Taylor series expansion increased. The simulation examples illustrate the effectiveness and correctness of the proposed algorithm.


2017 ◽  
Vol 25 (3) ◽  
pp. 199-214
Author(s):  
S.P. Vijayalakshmi ◽  
T.V. Sudharsan ◽  
Daniel Breaz ◽  
K.G. Subramanian

Abstract Let A be the class of analytic functions f(z) in the unit disc ∆ = {z ∈ C : |z| < 1g with the Taylor series expansion about the origin given by f(z) = z+ ∑n=2∞ anzn, z ∈∆ : The focus of this paper is on deriving upper bounds for the third order Hankel determinant H3(1) for two new subclasses of A.


Sign in / Sign up

Export Citation Format

Share Document