taylor series
Recently Published Documents


TOTAL DOCUMENTS

1454
(FIVE YEARS 248)

H-INDEX

44
(FIVE YEARS 6)

2022 ◽  
Vol 204 ◽  
pp. 107700
Author(s):  
Prateek Mundra ◽  
Anoop Arya ◽  
Suresh K Gawre ◽  
Sandeep Biswal ◽  
Felipe V. Lopes ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-46
Author(s):  
Tao Chen ◽  
Dikun Yang

Data interpolation is critical in the analysis of geophysical data when some data is missing or inaccessible. We propose to interpolate irregular or missing potential field data using the relation between adjacent data points inspired by the Taylor series expansion (TSE). The TSE method first finds the derivatives of a given point near the query point using data from neighboring points, and then uses the Taylor series to obtain the value at the query point. The TSE method works by extracting local features represented as derivatives from the original data for interpolation in the area of data vacancy. Compared with other interpolation methods, the TSE provides a complete description of potential field data. Specifically, the remainder in TSE can measure local fitting errors and help obtain accurate results. Implementation of the TSE method involves two critical parameters – the order of the Taylor series and the number of neighbors used in the calculation of derivatives. We have found that the first parameter must be carefully chosen to balance between the accuracy and numerical stability when data contains noise. The second parameter can help us build an over-determined system for improved robustness against noise. Methods of selecting neighbors around the given point using an azimuthally uniform distribution or the nearest-distance principle are also presented. The proposed approach is first illustrated by a synthetic gravity dataset from a single survey line, then is generalized to the case over a survey grid. In both numerical experiments, the TSE method has demonstrated an improved interpolation accuracy in comparison with the minimum curvature method. Finally we apply the TSE method to a ground gravity dataset from the Abitibi Greenstone Belt, Canada, and an airborne gravity dataset from the Vinton Dome, Louisiana, USA.


2021 ◽  
Author(s):  
Joseph Mora ◽  
Justin Mibaile ◽  
Vroumsia David ◽  
Sylvere Azakine ◽  
Gambo Betchewe

Abstract In this paper, by means of the expanded Taylor series and Lindstedt-Poincar ́e perturbation methods, the coupled nonlinear Schrödinger equations (CNLSE) modeling the propagation of acoustic waves in acoustic metamaterial is obtained. Using these equations, the Modulational Instability (MI) phenomenon is observed in disturbance mode. Manakov integrable system is derived with suitable parameters and we shown that the Rogue Waves (RWs) can propagate diatomic acoustic metamaterials.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3185
Author(s):  
Artur Karimov ◽  
Denis Butusov ◽  
Valery Andreev  ◽  
Erivelton G. Nepomuceno

While purely numerical methods for solving ordinary differential equations (ODE), e.g., Runge–Kutta methods, are easy to implement, solvers that utilize analytical derivations of the right-hand side of the ODE, such as the Taylor series method, outperform them in many cases. Nevertheless, the Taylor series method is not well-suited for stiff problems since it is explicit and not A-stable. In our paper, we present a numerical-analytical method based on the rational approximation of the ODE solution, which is naturally A- and A(α)-stable. We describe the rational approximation method and consider issues of order, stability, and adaptive step control. Finally, through examples, we prove the superior performance of the rational approximation method when solving highly stiff problems, comparing it with the Taylor series and Runge–Kutta methods of the same accuracy order.


Author(s):  
Svetlin Georgiev ◽  
Inci Erhan

A recent study on the Taylor series method of second order and the trapezoidal rule for dynamic equations on time scales has been continued by introducing a derivation of the Taylor series method of arbitrary order $p$ on time scales. The error and convergence analysis of the method is also obtained. The 2 step Adams-Bashforth method for dynamic equations on time scales is concluded and applied to examples of initial value problems for nonlinear dynamic equations. Numerical results are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document