scholarly journals High-Performance Adaptive Neurofuzzy Classifier with a Parametric Tuning

2018 ◽  
Vol 155 ◽  
pp. 01037
Author(s):  
Sergey Gorbachev ◽  
Vladimir Syryamkin

The article is devoted to research and development of adaptive algorithms for neuro-fuzzy inference when solving multicriteria problems connected with analysis of expert (foresight) data to identify technological breakthroughs and strategic perspectives of scientific, technological and innovative development. The article describes the optimized structuralfunctional scheme of the high-performance adaptive neuro-fuzzy classifier with a logical output, which has such specific features as a block of decision tree-based fuzzy rules and a hybrid algorithm for neural network adaptation of parameters based on the error back-propagation to the root of the decision tree.

SinkrOn ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 26-34
Author(s):  
Arie Satia Dharma ◽  
Lily Andayani Tampubolon ◽  
Daniel Somanta Purba

Currently the purchases of drugs at Instalasi Farmasi RSU (IFRS) HKBP Balige are based on the examination of the amount of drugs usage. The purchases of drugs based on the examination of the amount of drugs usage cause frequent unplanned drugs purchases that must be hastened (cito) and purchases to other pharmacies. The purchases of cito and purchases to other pharmacies will inflict a financial loss to the patients, because when IFRS makes drugs purchases of cito or to other pharmacies, the cost of the drugs will be more expensive. Therefore, in this research, a prediction of drugs stock in IFRS HKBP Balige using Adaptive Neuro Fuzzy Inference System (ANFIS) will be carried out. ANFIS is a combination of Least Square Estimator (LSE) and Error Back Propagation (EBP) algorithms. ANFIS consists of forward pass and the backward pass learning. The sample data used to predict drugs stock in this research is data of drugs sales at the IFRS HKBP Balige from 2013 to 2015. From the results of drugs stock prediction research with ANFIS, obtained that number of errors of ANFIS model is 5.52%. Based on MAPE accuracy level evaluation, number of errors have an excellent rate so that it can be concluded that the predicted results of the drugs stock are good.


2011 ◽  
Vol 268-270 ◽  
pp. 336-339
Author(s):  
Guo Lin Jing ◽  
Wen Ting Du ◽  
Quan Zhou ◽  
Song Tao Li

Fuzzy system is known to predict model in the electrodialysis process. This paper aimed to study fitting effect by ANFIS in a laboratory scale ED cell. Separation percent of NaCl solution is mainly as a function of concentration, temperature, flow rate and voltage. Besides, ANFIS(Adaptive Neuro-Fuzzy Inference System) based on Sugeno fuzzy model, its structure was similar to neural network and could generate fuzzy rules automatically, using the error back propagation algorithm and least square method to adjust the parameters of fuzzy inference system. We obtained fitted values of separation percent by ANFIS. Separation percent from experiments compared with the fitted values of separation percent. The result is shown that the correlation coefficient is 0.988. Therefore, it is verified as a good performance in the electrodialysis process.


2014 ◽  
Vol 9 (12) ◽  
pp. 1226-1234
Author(s):  
Kadir Temizel ◽  
Mehmet Odabas ◽  
Nurettin Senyer ◽  
Gokhan Kayhan ◽  
Sreekala Bajwa ◽  
...  

AbstractLack of water resources and high water salinity levels are among the most important growth-restricting factors for plants species of the world. This research investigates the effect of irrigation levels and salinity on reflectance of Saint John’s wort leaves (Hypericum perforatum L.) under stress conditions (water and salt stress) by multiple linear regression (MLR), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Empirical and heuristics modeling methods were employed in this study to relate stress conditions to leaf reflectance. It was found that the constructed ANN model exhibited a high performance than multiple regression and ANFIS in estimating leaf reflectance accurately.


Author(s):  
Masumeh Sabet ◽  
Mehdi Naseri ◽  
Hosein Sabet

Prediction of littoral drift with Adaptive Neuro-Fuzzy Inference System The amount of sand moving parallel to a coastline forms a prerequisite for many harbor design projects. Such information is currently obtained through various empirical formulae. Despite so many works in the past, an accurate and reliable estimation of the rate of sand drift has still remained a problem. It is a non-linear process and can be described by chaotic time-series. The current study addresses this issue through the use of Adaptive Neuro-Fuzzy Inference System (ANFIS). ANFIS is about taking an initial fuzzy inference system (FIS) and tuning it with a back propagation algorithm based on the collection of input-output data. ANFIS was developed to predict the sand drift from a variety of causative variables. The structure and algorithm of ANFIS for predicting the rate of sand drift is described. The Adaptive Neuro-Fuzzy Inference System was validated by confirming its consistency with a database of specified physical process.


Author(s):  
Mohammed Abdel-Nasser ◽  
Omar Salah

Robotics technology is used widely in minimally invasive surgery (MIS) which provides high performance and accuracy. The most famous robot arm mechanisms, which are used in MIS, are tendon-driven mechanism (TDM), and concentric tube mechanism (CTM). Unfortunately, these mechanisms until now have some limitations, i.e. making friction with the tissue during extracting and retracting and strain limits, for TDM and CTM respectively. A new hybrid concentric tube-tendon driven mechanism (HCTDM) is proposed to overcome these limitations. HCTDM enables the end-effector to get close to and get away from the surgical area during the operation without harming the tissue and with more flexibility. In addition to that, the workspace increases as a result of this combination, too. This benefit serves MIS, especially endoscopic surgeries (ESs). We did an analytical study of this idea and got the forward kinematics. In the inverse kinematics, an intelligent approach which is called an adaptive neuro-fuzzy inference system (ANFIS) is used because the closed-form solution is more complicated for such these mechanisms. Finally, HCTDM is analyzed and evaluated by using a computer simulation. The simulation results show that the workspace becomes wider and has more dexterity than use TDM or CTM individually. Furthermore, various trajectories are used to test the mechanism and the kinematic analysis, which show the mechanism can follow and track the trajectories with maximum mean error 1.279, 0.7027, and [Formula: see text] for X, Y, and Z axes respectively.


Author(s):  
Zahra Sadeghtabaghi ◽  
Mohsen Talebkeikhah ◽  
Ahmad Reza Rabbani

AbstractVitrinite reflectance (VR) is considered the most used maturity indicator of source rocks. Although vitrinite reflectance is an acceptable parameter for maturity and is widely used, it is sometimes difficult to measure. Furthermore, Rock-Eval pyrolysis is a current technique for geochemical investigations and evaluating source rock by their quality and quantity of organic matter, which provide low cost, quick, and valid information. Predicting vitrinite reflectance by using a quick and straightforward method like Rock-Eval pyrolysis results in determining accurate and reliable values of VR with consuming low cost and time. Previous studies used empirical equations for vitrinite reflectance prediction by the Tmax data, which was accompanied by poor results. Therefore, finding a way for precise vitrinite reflectance prediction by Rock-Eval data seems useful. For this aim, vitrinite reflectance values are predicted by 15 distinct machine learning models of the decision tree, random forest, support vector machine, group method of data handling, radial basis function, multilayer perceptron, adaptive neuro-fuzzy inference system, and multilayer perceptron and adaptive neuro-fuzzy inference system, which are coupled with evolutionary optimization methods such as grasshopper optimization algorithm, bat algorithm, particle swarm optimization, and genetic algorithm, with four inputs of Rock-Eval pyrolysis parameters of Tmax, S1/TOC, HI, and depth for the first time. Statistical evaluations indicate that the decision tree is the most precise model for VR prediction, which can estimate vitrinite reflectance precisely. The comparison between the decision tree and previous proposed empirical equations indicates that the machine learning method performs much more accurately.


Author(s):  
Ibrahim Goni ◽  
Christopher U. Ngene ◽  
Manga I. ◽  
Auwal Nata’ala ◽  
Sunday J. Calvin

Tuberculosis is a contiguous disease that is causing death both in developed and developing countries. The main aim of this research work was to a developed an intelligent system for diagnosing Tuberculosis using adaptive neuro-fuzzy methodology. Eleven symptoms of tuberculosis which are persistent cough for more than two weeks, cough with blood, weight loss, tiredness, chest pain, fever, difficulty in breathing, loss of appetite, lymph node enlargement, history of TB contact and night Sweat are assigned with weights which are categorize best on severity level as mild, moderate, severe and very severe, yes and no which serve as inputs to the adaptive neuro-fuzzy inference system (ANFIS). MATLAB 7.0 is used to implement this experiment, Trapezoidal Membership function was used, back propagation algorithm was used for training and testing, the error obtain is 0.41777 at epoch 2 which shows that the training performance is exactly 99.58223 and testing performance of the system are 99.58197 at epoch 2.   


Author(s):  
Rahul Kala ◽  
Anupam Shukla ◽  
Ritu Tiwari

In this chapter authors describe the application of various soft computing techniques in the field of medical diagnosis. They also explained new approaches being applied to the field of Bio-Medical Engineering as well as many new models being proposed, like Hybrid Systems and standard Back Propagation Algorithm for this purpose. These are Adaptive Neuro Fuzzy Inference Systems, Ensembles and Evolutionary Artificial Neural Networks.


Author(s):  
Danuta Rutkowska ◽  
◽  
Yoichi Hayashi ◽  

Two major approaches to neuro-fuzzy systems are distinguished in the paper. The previous one refers to fuzzy neural networks, which are neural networks with fuzzy signals, and/or fuzzy weights, as well as fuzzy transfer functions. The latter approach concerns neuro-fuzzy systems in the form of multilayer feed-forward networks, which differ from standard neural networks, because elements of particular layers conduct different operations than standard neurons. These structures are neural network representations of fuzzy systems and they are also called connectionist models of fuzzy systems, adaptive fuzzy systems, fuzzy inference neural networks, etc. Two different defuzzifiers, applied to fuzzy systems, are in focus of the paper. Center-of-sums method is an example of parametric defuzzification. Standard neural networks a defuzzifier presents nonparametric approach to defuzzification. For both cases learning algorithms of neuro-fuzzy systems are proposed. These algorithms take a form of recursions derived based on the momentum back-propagation method. Computer simulation demonstrates a comparison between performance of neuro-fuzzy systems with the parametric and nonparametric defuzzifier. Truck backer-upper control problem has been used to illustrate the systems performance. Conclusions concerning the simulation results are summarized. The paper pertains many references on neuro-fuzzy systems, especially selected publications of Czogala, whom it is dedicated.


Sign in / Sign up

Export Citation Format

Share Document