scholarly journals Investigation on influence of cutting parameters on spindle vibration of CNC wood milling machine

2018 ◽  
Vol 213 ◽  
pp. 01007
Author(s):  
Tran Van Thuy ◽  
Huu Loc Nguyen

In machining operation, the cutting parameters greatly influences on the spindle vibration of a CNC wood milling machine. The paper presents the effect of the cutting parameters such as feed rate, cutting speed, and cutting depth on the vibration amplitude of the spindle when machined on CNC milling machine using Box-Hunter method of experimentation. The lowest natural frequency of this machine is 250 Hz. Experimental results have established a second-order regression equation that demonstrates the effect of three parameters such as feed rate, cutting speed, and cutting depth on the vibration amplitude of the spindle. From that base, determine the most reasonable cutting parameters when machining on CNC wood milling machines so that the spindle vibration amplitudes is minimal. In addition, The comparison results show that the spindle head vibration amplitude of the machine using the bolt joint is larger than the spindle head vibration amplitude of the machine using the weld joint.

2019 ◽  
Vol 894 ◽  
pp. 82-89
Author(s):  
Van Thuy Tran ◽  
Huu Loc Nguyen ◽  
Hoang Hiep Nguyen

. An understanding of the dynamic characteristics of a CNC machine is a vital element in the control of the machine which has a direct effect on the machining precision. The ways in which energy is dissipated, such as friction and damping, have a significant effect on the dynamic behavior and spindle vibration of a CNC machine. The paper presents kinetic analysis of the CNC machine damper system, effect of the damper and the cutting parameters such as feed rate, cutting speed, and cutting depth on the dynamic behavior and spindle vibration of a CNC machine. Experimental results have established a second-order regression equation that demonstrates the effect of three parameters such as feed rate, cutting speed, and cutting depth on the vibration amplitude of the spindle. In addition, the comparison results show that the spindle head vibration amplitude of the machine using the damper is smaller than the spindle head vibration amplitude of the machine not using the damper.


2019 ◽  
Vol 9 (5) ◽  
pp. 957 ◽  
Author(s):  
Ngoc-Pi Vu ◽  
Quoc-Tuan Nguyen ◽  
Thi-Hong Tran ◽  
Hong-Ky Le ◽  
Anh-Tuan Nguyen ◽  
...  

Cutting regime parameters play an important role in determining the efficiency of the grinding process and the quality of the ground parts. In this study, the influences of the cutting parameters, including the cutting depth (ae), the feed rate (Fe) and the wheel speed (RPM) on the grinding time when grinding tablet shape punches by a cubic boron nitride (CBN) wheel on a CNC (Computerized Numerical Control) milling machine are investigated. The Taguchi technique based on orthogonal array and analysis of variance (ANOVA) was then applied to design the number of experiments and evaluate the influence of cutting depth, feed rate and wheel speed on the grinding time. The results show that among the three cutting parameters, the most influential parameter on the grinding time is the cutting depth. The second influential parameter on the grinding time is the feed rate. The least influential parameter on grinding time is the wheel speed. In addition, the optimal condition of cutting parameters obtained for grinding tablet shape punches by cubic boron nitride wheels on a CNC milling machine are a cutting depth of 0.03 mm, wheel speed of 5000 rpm and feed rate of 3500 mm/min. This optimum cutting parameters ensure the least grinding time.


2015 ◽  
Vol 667 ◽  
pp. 9-14
Author(s):  
Guang Jun Chen ◽  
Liang Wang ◽  
Bai Ting He ◽  
Ling Guo Kong ◽  
Xiao Qin Zhou

The cutting vibration has a great influence on the processing quality of Hardened steel. The research conducted in this paper is about how the cutting parameters influence the cutting vibration amplitude when the hardened steel is cut. The experiments were performed on CNC lathe CAK4085 with PCBN tool, where the cutting speed, feed rate, cutting depth and corner radius had been orthogonally combined. The cutting materials were hardened steel Cr12MoV and GCr15 whose hardness is HRC50-52 and HRC62-64. The cutting vibration amplitude under different group parameters was collected by electric eddy current sensors. An analysis about the influence rule of cutting parameters on cutting vibration amplitude had been made. With the increase of cutting speed, vibration amplitude will increase first, and then decrease. With the appropriate increase of feed rate, vibration amplitude will be reduced. With the increase of cutting depth and corner radius, vibration amplitude will both increase. This research can provide reference for improving cutting quality.


2014 ◽  
Vol 800-801 ◽  
pp. 237-240
Author(s):  
Li Fu Xu ◽  
Ze Liang Wang ◽  
Shu Tao Huang ◽  
Bao Lin Dai

In this paper, the cutting experiment was used to study the influence of various cutting parameters on cutting force when rough turning titanium alloy (TC4) with the whole CBN tool. The results indicate that among the cutting speed, feed rate and cutting depth, the influence of the cutting depth is the most significant on cutting force; the next is the feed rate and the cutting speed is at least.


2015 ◽  
Vol 727-728 ◽  
pp. 354-357
Author(s):  
Mei Xia Yuan ◽  
Xi Bin Wang ◽  
Li Jiao ◽  
Yan Li

Micro-milling orthogonal experiment of micro plane was done in mesoscale. Probability statistics and multiple regression principle were used to establish the surface roughness prediction model about cutting speed, feed rate and cutting depth, and the significant test of regression equation was done. On the basis of successfully building the prediction model of surface roughness, the diagram of surface roughness and cutting parameters was intuitively built, and then the effect of the cutting speed, feed rate and cutting depth on the small structure surface roughness was obtained.


2016 ◽  
Vol 36 (3) ◽  
pp. 89 ◽  
Author(s):  
Orquídea Sánchez López ◽  
Armando Rosas González ◽  
Ignacio Hernández Castillo

The aim of this research is to analyze the influence of cutting speed, feed rate and cutting depth on the surface finish of grade GSP-70 graphite specimens for use in electrical discharge machining (EDM) for material removal by means of Computer Numerical Control (CNC) milling with low-speed machining (LSM). A two-level factorial design for each of the three established factors was used for the statistical analysis. The analysis of variance (ANOVA) indicates that cutting speed and feed rate are the two most significant factors with regard to the roughness obtained with grade GSP-70 graphite by means of CNC milling. A second order regression analysis was also conducted to estimate the roughness average (Ra) in terms of the cutting speed, feed rate and cutting depth. Finally, the comparison between predicted roughness by means of a second order regression model and the roughness obtained by machined specimens considering the combinations of low and high levels of roughness is also presented.


Author(s):  
Xiao-fen Liu ◽  
Wen-hu Wang ◽  
Rui-song Jiang ◽  
Yi-feng Xiong ◽  
Kun-yang Lin ◽  
...  

Abstract The current state of surface roughness focuses on the 2D roughness. However, there are shortcomings in evaluating surface quality of particle reinforced metal matrix composites using 2D roughness due to the fact that the measuring direction has a vital impact on the 2D roughness value. It is therefore of great importance and significance to develop a proper criterion for measuring and evaluating the surface roughness of cutting particle reinforced metal matrix composites. In this paper, an experimental investigation was performed on the effect of cutting parameters on the surface roughness in cutting in-situ TiB2/7050Al MMCs. The 2D roughness Ra, 3D roughness Sa and Sq were comparatively studied for evaluating the machined surface quality of in-situ TiB2/7050Al MMCs. The influence of cutting parameters on the surface roughness was also analyzed. The big difference between roughness Ra measured along cutting and feed directions showed the great impact of measuring direction. Besides, surface defects such as pits, grooves, protuberances and voids were observed, which would influence 2D roughness value greatly, indicating that 3D roughness was more suitable for evaluating surface quality of cutting in-situ TiB2/7050Al MMCs. The cutting depth and feed rate were found to have the highest influence on 3D roughness while the effect of cutting speed was minimal. With increasing feed rate, cutting depth or width, the 3D roughness increased accordingly. But it decreased as cutting speed increased.


2018 ◽  
Vol 211 ◽  
pp. 03011
Author(s):  
Nitin Ambhore ◽  
Dinesh Kamble ◽  
Satish Chinchanikar

The changing behavior of vibration signals with varying cutting parameters (cutting speed, feed rate and depth of cut) for turning hardened AISI52100 steel has been studied and reported. The vibration response of cutting tool in all three mutually perpendicular directions, namely, in feed Vx, radial Vy and, tangential Vz directions have been captured by mounting piezoelectric tri-axial accelerometer close to the cutting tool. Experiments are planned and conducted as per Central composite rotatable design of Surface response methodology. The second order multiple regression models are developed to correlate cutting parameters with vibration acceleration and surface roughness. The coefficient of regression R2 for all models is found close to 0.92 which shows that the developed models are reliable and provide an excellent explanation between the cutting parameter and the vibration of cutting tool within limits. The analysis of the results revealed that cutting conditions are having prominent and mixed type effect on vibration signals. The acceleration amplitude Vx, Vy and Vz increases with increase in cutting speed, and depth of cut. The vibration amplitude Vx, Vy and Vz initially increases as feed increases and, with further increase in feed, the vibration amplitude decreases. The surface roughness is highly influenced by the feed rate followed by cutting speed whereas the depth of cut was found less significant. The fluctuation in frequency is observed in all directions. However, the band of frequency remains within a certain range. Within selected cutting parameter range, the maximum acceleration amplitude is observed in frequency band of 4 kHz - 16 kHz.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Maohua Xiao ◽  
Xiaojie Shen ◽  
You Ma ◽  
Fei Yang ◽  
Nong Gao ◽  
...  

The turning test of stainless steel was carried out by using the central composite surface design of response surface method (RSM) and Taguchi design method of central combination design. The influence of cutting parameters (cutting speed, feed rate, and cutting depth) on the surface roughness was analyzed. The surface roughness prediction model was established based on the second-order RSM. According to the test results, the regression coefficient was estimated by the least square method, and the regression equation was curve fitted. Meanwhile, the significance analysis was conducted to test the fitting degree and response surface design and analysis, in addition to establishing a response surface map and three-dimensional surface map. The life of the machining tool was analyzed based on the optimized parameters. The results show that the influence of feed rate on the surface roughness is very significant. Cutting depth is the second, and the influence of cutting speed is the least. Therefore, the cutting parameters are optimized and tool life is analyzed to realize the efficient and economical cutting of difficult-to-process materials under the premise of ensuring the processing quality.


Author(s):  
Nelson Wilson Paschoalinoto ◽  
Ed Claudio Bordinassi ◽  
Roberto Bortolussi ◽  
Fabrizio Leonardi ◽  
Sergio Delijaicov

This study focused on determining the residual stress of SAE 52100 hard-turned steel. The objective was to evaluate and compare the effects of the cutting-edge geometry and cutting parameters (cutting speed, feed rate, and cutting depth) on the residual stresses of three different conventional inserts: S-WNGA08 0408S01020A 7025, T-WNGA08 0408T01020A 7025, and S-WNGA432S0330A 7025. Tests were performed on 60 samples of SAE 52100 hardened steel with an average hardness of 58.5 HRC. The circumferential residual stresses of the samples were measured by X-ray diffraction. A full factorial design of experiments with three factors and two levels each with two central points and a replicate was used for a statistical analysis. The most significant results were as follows: For all inserts, the measured residual stresses were compressive, which extended the tool lifespan. The residual stresses of the Type-S inserts were significantly influenced by the cutting speed and depth, and those of the Type-T insert were significantly influenced by the feed rate and cutting depth. In addition, the residual stresses of the insert 3 were more compressive than those of the other two types of inserts. In other words, residual stresses are more compressive for inserts with larger chamfer angles even as the principal residual stress profiles were all compressive. This work has also shown that it is possible to determine a significant statistical relationship between cutting forces and residual stresses, allowing force measurements to predict the residual stress without any information on process parameters.


Sign in / Sign up

Export Citation Format

Share Document