scholarly journals Soil-structure interaction effects on modal parameters of office buildings with different number of stories

2018 ◽  
Vol 219 ◽  
pp. 03001 ◽  
Author(s):  
Natalia Lasowicz ◽  
Tomasz Falborski

The paper summarizes the results of a numerical investigation designed to study the soil-structure interaction effects on modal parameters of three office buildings. The reinforced-concrete 4-storey, 8-storey, and 12-storey office buildings, each with additional two levels of embedded basements, represent low, medium, and high-rise structures, respectively. In order to conduct this research, detailed finite-element structure models were prepared. Soil-foundation flexibility was represented with the use of spring-based solutions, incorporating foundation springs and dashpots. The influence of diverse soil conditions (represented by their average effective profile velocities and shear moduli) on the dynamic characteristics of the analyzed three office buildings (e.g. fundamental vibration periods) was investigated and discussed.

2021 ◽  
pp. 875529302098197
Author(s):  
Jason M Buenker ◽  
Scott J Brandenberg ◽  
Jonathan P Stewart

We describe two experiments performed on a 9-m-radius geotechnical centrifuge to evaluate dynamic soil–structure interaction effects on the cyclic failure potential of fine-grained soil. Each experiment incorporated three different structures with a range of mass and stiffness properties. Structures were founded on strip footings embedded in a thin layer of sand overlying lightly overconsolidated low-plasticity fine-grained soil. Shaking was applied to the base of the model container, consisting of scaled versions of recorded earthquake ground motions, sweep motions, and step waves. Data recorded during testing were processed and published on the platform DesignSafe. We describe the model configuration, sensor information, shaking events, and data processing procedures and present selected processed data to illustrate key model responses and to provide a benchmark for data use.


1979 ◽  
Vol 69 (1) ◽  
pp. 221-236
Author(s):  
R. R. Little ◽  
D. D. Raftopoulos

abstract An analytical expression describing the three-dimensional vertical soil-structure interaction effects is developed using Laplace and Hankel transformation techniques. Utilizing these transformation techniques and normal mode theory of vibration, an N-mass structural model is coupled to an elastic half-space representing the earth. The resulting interaction equation is solved by numerical iteration techniques for a model of a nuclear power plant subjected to actual earthquake ground excitation. The effects of the soil-structure interaction are evaluated by comparing free-field acceleration spectrum response curves with similar curves determined from the foundation motion. These effects are found to be significant for structures typical of modern nuclear power plants subjected to seismic ground motions.


2017 ◽  
Vol 92 ◽  
pp. 52-67 ◽  
Author(s):  
Sandro Carbonari ◽  
Michele Morici ◽  
Francesca Dezi ◽  
Fabrizio Gara ◽  
Graziano Leoni

Sign in / Sign up

Export Citation Format

Share Document