Generation of a 3D model to better mimic NAFLD in vitro

2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
LS Spitzhorn ◽  
MA Kawala ◽  
J Adjaye
Keyword(s):  
2007 ◽  
Vol 30 (4) ◽  
pp. 77
Author(s):  
Derek Cool ◽  
Shi Sherebrin ◽  
Jonathan Izawa ◽  
Joseph Chin ◽  
Aaron Fenster

Introduction: Transrectal ultrasound (TRUS) prostate biopsy (Bx) is currently confined to 2D information to both target and record 3D Bx locations. Accurate placement of Bx needles cannot be verified without 3D information, and recording Bx sites in 2D does not provide sufficient information to accurately guide the high incidence of repeat Bx. We have designed a 3D TRUS prostate Bx system that augments the current 2D TRUS system and provides tools for biopsy-planning, needle guidance, and recording of the biopsy core locations entirely in 3D. Methods: Our Bx system displays a 3D model of the patient’s prostate, which is generated intra-procedure from a collection of 2D TRUS images, representative of the particular prostate shape. Bx targets are selected, needle guidance is facilitated, and 3D Bx sites are recorded within the 3D context of the prostate model. The complete 3D Bx system was validated, in vitro, by performing standard ten-core Bx on anatomical phantoms of two patient’s prostates. The accuracy of the needle-guidance, Bx location recording, and 3D model volume and surface topology were validated against a CT gold standard. Results: The Bx system successfully reconstructed the 3D patient prostate models with a mean volume error of 3.2 ± 7.6%. Using the 3D system, needles were accurately guided to the pre-determined targets with a mean error of 2.26 ± 1.03 mm and the 3D locations of the Bx cores were accurately recorded with a mean distance error of 1.47 ± 0.79 mm. Conclusion: We have successfully developed a 3D TRUS prostate biopsy system and validated the system in vitro. A pilot study has been initiated to apply the system clinically.


Author(s):  
Linsey E. Haswell ◽  
David Smart ◽  
Tomasz Jaunky ◽  
Andrew Baxter ◽  
Simone Santopietro ◽  
...  

2016 ◽  
Vol 110 (3) ◽  
pp. 339a
Author(s):  
Emilie Gontran ◽  
Marjorie Juchaux ◽  
Christophe Deroulers ◽  
Mathilde Badoual ◽  
Olivier Seksek

2019 ◽  
Vol 22 (1) ◽  
pp. Process
Author(s):  
Karen Cristina Archangelo ◽  
Marcela Moreira Penteado ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Andrea Souza Nogueira ◽  
João Paulo Mendes Tribst ◽  
...  

This short report evaluated the differences in stress concentration and the load to fracture of multilayered and monolayer glass ceramic discs. Using a static structural analysis, the 3D model of the discs received a load of 150N and results in maximum principal stress were obtained. For the in vitro analysis, the samples (ø 12 mm) were submitted to a compressive test (100kgf, 1mm/min). The data was analyzed using one-way analysis of variance and Tukey test (α=5%). The monolayer group showed a lower stress peak (129.24 MPa) and higher load to fracture (118.38N) than the multilayered group with 211.04MPa and 48.34N, respectively. All samples presented catastrophic failure with its origin on the tensile surface. Therefore, the monolayer ceramic group showed superior mechanical behavior than the multilayered group.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5858
Author(s):  
Ana Carolina Batista Brochado ◽  
Victor Hugo de Souza ◽  
Joice Correa ◽  
Suzana Azevedo dos Anjos ◽  
Carlos Fernando de Almeida Barros Mourão ◽  
...  

Successful biomaterials for bone tissue therapy must present different biocompatible properties, such as the ability to stimulate the migration and proliferation of osteogenic cells on the implantable surface, to increase attachment and avoid the risks of implant movement after surgery. The present work investigates the applicability of a three-dimensional (3D) model of bone cells (osteospheres) in the evaluation of osteoconductive properties of different implant surfaces. Three different titanium surface treatments were tested: machined (MA), sandblasting and acid etching (BE), and Hydroxyapatite coating by plasma spray (PSHA). The surfaces were characterized by Scanning Electron Microscopy (SEM) and atomic force microscopy (AFM), confirming that they present very distinct roughness. After seeding the osteospheres, cell–surface interactions were studied in relation to cell proliferation, migration, and spreading. The results show that BE surfaces present higher densities of cells, leaving the aggregates towards than titanium surfaces, providing more evidence of migration. The PSHA surface presented the lowest performance in all analyses. The results indicate that the 3D model allows the focal analysis of an in vitro cell/surfaces interaction of cells and surfaces. Moreover, by demonstrating the agreement with the clinical data observed in the literature, they suggest a potential use as a predictive preclinical tool for investigating osteoconductive properties of novel biomaterials for bone therapy.


2018 ◽  
Author(s):  
Mijo Simunovic ◽  
Jakob J. Metzger ◽  
Fred Etoc ◽  
Anna Yoney ◽  
Albert Ruzo ◽  
...  

ABSTRACTBreaking the anterior-posterior (AP) symmetry in mammals takes place at gastrulation. Much of the signaling network underlying this process has been elucidated in the mouse, however there is no direct molecular evidence of events driving axis formation in humans. Here, we use human embryonic stem cells to generate an in vitro 3D model of a human epiblast whose size, cell polarity, and gene expression are similar to a 10-day human epiblast. A defined dose of bone mor-phogenetic protein 4 (BMP4) spontaneously breaks axial symmetry, and induces markers of the primitive streak and epithelial to mesenchymal transition. By gene knockouts and live-cell imaging we show that, downstream of BMP4, WNT3 and its inhibitor DKK1 play key roles in this process. Our work demonstrates that a model human epiblast can break axial symmetry despite no asymmetry in the initial signal and in the absence of extraembryonic tissues or maternal cues. Our 3D model opens routes to capturing molecular events underlying axial symmetry breaking phenomena, which have largely been unexplored in model human systems.


2019 ◽  
Author(s):  
Mijo Simunovic ◽  
Ali H. Brivanlou ◽  
Eric D. Siggia

Abstract We describe the protocol of generating a 3D stem-cell-based model of the human pre-gastrulation epiblast by culturing human embryonic stem cells in a mix of hydrogel and Matrigel. Much like the epiblast of an in vitro attached day-10 human embryo, this model is an epithelial sphere with a cavity at its center, it is expressing key pluripotency markers, and it displays apico-basal polarity. The 3D colonies can further be differentiated with morphogens and in the case of intermediate concentrations of BMP4, they break the anterior-posterior symmetry characterized by an asymmetric expression of a primitive streak marker and showing signs of epithelial to mesenchymal transition. The protocol described here is suitable for immunofluorescence staining and for live-cell imaging.


Author(s):  
Clayton J. Underwood ◽  
Laxminarayanan Krishnan ◽  
Lowell T. Edgar ◽  
Steve Maas ◽  
James B. Hoying ◽  
...  

We reported previously that, in addition to mechanical strain, a constrained boundary condition alone can alter the organization of microvessel outgrowth during in vitro angiogenesis [1]. After 6 days of culture in vitro, microvessels aligned parallel to the long axis of rectangular 3D collagen gels that had constrained edges on the ends. However, unconstrained cultures did not show any alignment of microvessels. The ability to direct microvessel outgrowth during angiogenesis has significant implications for engineering prevascularized grafts and tissues in vitro, therefore an understanding of this process is important. Since there is direct relationship between the ability of endothelial cells to contract 3D gels and matrix stiffness [2], we hypothesize that some constrained boundary conditions will increase the apparent matrix stiffness and in turn will limit gel contraction, prevent microvessel alignment, and reduce microvessel outgrowth. The objective of this study was to compare microvessel growth and alignment under several different static boundary conditions.


2020 ◽  
Vol 21 (11) ◽  
pp. 3998 ◽  
Author(s):  
Madalena Cipriano ◽  
Pedro F Pinheiro ◽  
Catarina O Sequeira ◽  
Joana S Rodrigues ◽  
Nuno G Oliveira ◽  
...  

The need for competent in vitro liver models for toxicological assessment persists. The differentiation of stem cells into hepatocyte-like cells (HLC) has been adopted due to its human origin and availability. Our aim was to study the usefulness of an in vitro 3D model of mesenchymal stem cell-derived HLCs. 3D spheroids (3D-HLC) or monolayer (2D-HLC) cultures of HLCs were treated with the hepatotoxic drug nevirapine (NVP) for 3 and 10 days followed by analyses of Phase I and II metabolites, biotransformation enzymes and drug transporters involved in NVP disposition. To ascertain the toxic effects of NVP and its major metabolites, the changes in the glutathione net flux were also investigated. Phase I enzymes were induced in both systems yielding all known correspondent NVP metabolites. However, 3D-HLCs showed higher biocompetence in producing Phase II NVP metabolites and upregulating Phase II enzymes and MRP7. Accordingly, NVP-exposure led to decreased glutathione availability and alterations in the intracellular dynamics disfavoring free reduced glutathione and glutathionylated protein pools. Overall, these results demonstrate the adequacy of the 3D-HLC model for studying the bioactivation/metabolism of NVP representing a further step to unveil toxicity mechanisms associated with glutathione net flux changes.


Sign in / Sign up

Export Citation Format

Share Document