The role of microbiota in concanavalin A-mediated liver injury

2018 ◽  
Vol 56 (01) ◽  
pp. E2-E89
Author(s):  
B Schiller ◽  
C Wegscheid ◽  
L Berkhout ◽  
A Zarzycka ◽  
U Steinhoff ◽  
...  
Keyword(s):  
2001 ◽  
Vol 120 (5) ◽  
pp. A54-A54
Author(s):  
H LOUIS ◽  
A MOINE ◽  
E QUERTINMONT ◽  
F PAULART ◽  
N NAGY ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 857 ◽  
Author(s):  
Kaikai Bai ◽  
Bihong Hong ◽  
Jianlin He ◽  
Wenwen Huang

Selenium nanoparticles (SeNPs) have attracted wide attention for their use in nutritional supplements and nanomedicine applications. However, their potential to protect against autoimmune hepatitis has not been fully investigated, and the role of their antioxidant capacity in hepatoprotection is uncertain. In this study, chitosan-stabilized SeNPs (CS-SeNPs) were prepared by means of rapid ultra-filtration, and then their antioxidant ability and free-radical scavenging capacity were evaluated. The hepatoprotective potential of a spray-dried CS-SeNPs powder against autoimmune liver disease was also studied in the concanavalin A (Con A)-induced liver injury mouse model. CS-SeNPs with size of around 60 nm exhibited acceptable oxygen radical absorbance capacity and were able to scavenge DPPH, superoxide anion, and hydroxyl radicals. The CS-SeNPs powder alleviated Con A-caused hepatocyte necrosis and reduced the elevated levels of serum alanine transaminase, aspartate transaminase, and lactic dehydrogenase in Con A-treated mice. These results suggest that the CS-SeNPs powder protected the mice from Con-A-induced oxidative stress in the liver by retarding lipid oxidation and by boosting the activities of superoxide dismutase, glutathione peroxidase, and catalase, partly because of its ability to improve Se retention. In conclusion, SeNPs present potent hepatoprotective potential against Con A-induced liver damage by enhancing the redox state in the liver; therefore, they deserve further development.


2001 ◽  
Vol 120 (5) ◽  
pp. A54
Author(s):  
Hubert Louis ◽  
Alain Le Moine ◽  
Eric Quertinmont ◽  
Frederic Paulart ◽  
Nathalie Nagy ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Qing Pang ◽  
Hao Jin ◽  
Xiquan Ke ◽  
Zhongran Man ◽  
Yong Wang ◽  
...  

Serotonin is involved in the pathological processes of several liver diseases via the regulation of inflammatory response and oxidative stress. We aimed to investigate the role of serotonin in Concanavalin A- (Con A-) induced acute liver injury (ALI). ALI was induced in C57B/6 wild-type (WT) mice and tryptophan hydroxylase 1 (TPH1) knockout mice through tail vein injection of Con A (15 mg/kg body weight). Another group of TPH1 knockout ALI mice was supplied with 5-hydroxytryptophan (5-HTP) in advance to recover serotonin. The blood and liver tissues of mice were collected in all groups. Markedly increased serum levels of serotonin were identified after the injection of Con A. Increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and stronger hepatic tissue pathology were detected, suggesting that serotonin could mediate Con A-induced liver damage. Serotonin significantly facilitated the release of serum and intrahepatic inflammatory cytokines, including interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-17A (IL-17A), interferon-gamma (IFN-γ), and tumor necrosis-alpha (TNF-α), after the administration of Con A. In addition, serotonin significantly increased the intrahepatic levels of oxidative stress markers malonaldehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) and decreased antioxidant stress indicator glutathione (GSH) in Con A-treated mice. Additionally, serotonin promoted hepatocyte apoptosis and autophagy based on B-cell lymphoma-2 (Bcl-2), Bcl-2-asociated X protein (Bax), and Beclin-1 levels and TUNEL staining. More importantly, serotonin activated nuclear factor kappa B (NF-κB) and upregulated the hepatic expressions of high mobility group protein B1 (HMGB1), toll-like receptor-4 (TLR4), and downstream molecules in Con A-mediated liver injury. Serotonin 2A receptor was upregulated in liver tissue after Con A injection, and serotonin 2A receptor antagonist Ketanserin protected against Con A-induced hepatitis. These results indicated that serotonin has the potential to aggravate Con A-induced ALI via the promotion of inflammatory response, oxidative stress injury, and hepatocyte apoptosis and the activation of hepatic HMGB1-TLR signaling pathway and serotonin 2A receptor.


2021 ◽  
Vol 22 (14) ◽  
pp. 7436
Author(s):  
Helga Simon-Molas ◽  
Xavier Vallvé-Martínez ◽  
Irene Caldera-Quevedo ◽  
Pere Fontova ◽  
Claudia Arnedo-Pac ◽  
...  

The glycolytic modulator TP53-Inducible Glycolysis and Apoptosis Regulator (TIGAR) is overexpressed in several types of cancer and has a role in metabolic rewiring during tumor development. However, little is known about the role of this enzyme in proliferative tissues under physiological conditions. In the current work, we analysed the role of TIGAR in primary human lymphocytes stimulated with the mitotic agent Concanavalin A (ConA). We found that TIGAR expression was induced in stimulated lymphocytes through the PI3K/AKT pathway, since Akti-1/2 and LY294002 inhibitors prevented the upregulation of TIGAR in response to ConA. In addition, suppression of TIGAR expression by siRNA decreased the levels of the proliferative marker PCNA and increased cellular ROS levels. In this model, TIGAR was found to support the activity of glucose 6-phosphate dehydrogenase (G6PDH), the first enzyme of the pentose phosphate pathway (PPP), since the inhibition of TIGAR reduced G6PDH activity and increased autophagy. In conclusion, we demonstrate here that TIGAR is upregulated in stimulated human lymphocytes through the PI3K/AKT signaling pathway, which contributes to the redirection of the carbon flux to the PPP.


Author(s):  
Dongxiao Li ◽  
Xiangming Ding ◽  
Dean Tian ◽  
Limin Xia
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document