stellate cell
Recently Published Documents


TOTAL DOCUMENTS

1716
(FIVE YEARS 440)

H-INDEX

89
(FIVE YEARS 12)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261789
Author(s):  
Xiaoying Liu ◽  
Sarah A. Taylor ◽  
Kyle D. Gromer ◽  
Danny Zhang ◽  
Susan C. Hubchak ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of liver diseases in the United States and can progress to cirrhosis, end-stage liver disease and need for liver transplantation. There are limited therapies for NAFLD, in part, due to incomplete understanding of the disease pathogenesis, which involves different cell populations in the liver. Endoplasmic reticulum stress and its adaptative unfolded protein response (UPR) signaling pathway have been implicated in the progression from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH). We have previously shown that mice lacking the UPR protein X-box binding protein 1 (XBP1) in the liver demonstrated enhanced liver injury and fibrosis in a high fat sugar (HFS) dietary model of NAFLD. In this study, to better understand the role of liver XBP1 in the pathobiology of NAFLD, we fed hepatocyte XBP1 deficient mice a HFS diet or chow and investigated UPR and other cell signaling pathways in hepatocytes, hepatic stellate cells and immune cells. We demonstrate that loss of XBP1 in hepatocytes increased inflammatory pathway expression and altered expression of the UPR signaling in hepatocytes and was associated with enhanced hepatic stellate cell activation after HFS feeding. We believe that a better understanding of liver cell-specific signaling in the pathogenesis of NASH may allow us to identify new therapeutic targets.


2022 ◽  
Author(s):  
Daniel R Plaugher ◽  
Boris Aguilar ◽  
David Murrugarra

Pancreatic Ductal Adenocarcinoma (PDAC) is widely known for its poor prognosis because it is often diagnosed when the cancer is in a later stage. We built a model to analyze the microenvironment of pancreatic cancer in order to better understand the interplay between pancreatic cancer, stellate cells, and their signaling cytokines. Specifically, we have used our model to study the impact of inducing four common mutations: KRAS, TP53, SMAD4, and CDKN2A. After implementing the various mutation combinations, we used our stochastic simulator to derive aggressiveness scores based on simulated attractor probabilities and long-term trajectory approximations. These aggression scores were then corroborated with clinical data. Moreover, we found sets of control targets that are effective among common mutations. These control sets contain nodes within both the pancreatic cancer cell and the pancreatic stellate cell, including PIP3, RAF, PIK3 and BAX in pancreatic cancer cell as well as ERK and PIK3 pancreatic stellate cell. Many of these nodes were found to be differentially expressed among pancreatic cancer patients in the TCGA database. Furthermore, literature suggests that many of these nodes can be targeted by drugs currently in circulation. The results herein help provide a proof of concept in the path towards personalized medicine through a means of mathematical systems biology. All data and code used for running simulations, statistical analysis, and plotting is available on a GitHub repository at https://github.com/drplaugher/PCC_Mutations .


2022 ◽  
Author(s):  
Nobuhiro Hasui ◽  
Katsuhisa Sakaguchi ◽  
Tatsuya Shimizu ◽  
Yoshihiro Sakamoto ◽  
Tetsuya Ogawa

Abstract Background Despite the increasing prevalence of Nonalcoholic steatohepatitis (NASH) worldwide, there is no effective treatment available for this disease. “Ballooned hepatocyte” is a characteristic finding in NASH and is correlated with disease prognosis, but their mechanisms of action are poorly understood; furthermore, neither animal nor in vitro models of NASH have been able to adequately represent ballooned hepatocytes. Herein, we engineered cell sheets to develop a new in vitro model of ballooned hepatocytes. Methods Primary human hepatocytes (PHH) and Hepatic stellate cells (HSC) were co-cultured to produce cell sheets, which were cultured in glucose and lipid containing medium, following which histological and functional analyses were performed. Results Histological findings showed hepatocyte ballooning, accumulation of fat droplets, abnormal cytokeratin arrangement, and the presence of Mallory-Denk bodies and abnormal organelles. These findings are similar to those of ballooned hepatocytes in human NASH. Functional analysis showed elevated levels of TGFβ-1, SHH, and p62, but not TNF-α, IL-8. Conclusions Exposure of PHH/HSC sheets to a glucolipotoxicity environment induces ballooned hepatocyte without inflammation. Moreover, fibrosis is an important mechanism underlying ballooned hepatocytes and could be the basis for the development of a new in vitro NASH model with ballooned hepatocytes.


2022 ◽  
Vol 10 (1) ◽  
pp. e003069
Author(s):  
Boyuan Liu ◽  
Zewei Zhou ◽  
Yu Jin ◽  
Jinying Lu ◽  
Dongju Feng ◽  
...  

BackgroundThe significance of the relationship between the microbiota and diseases is increasingly being recognized. However, the characterization of tumor microbiome and their precise molecular mechanisms through which microbiota promotes hepatocellular carcinoma (HCC) development are still unclear.MethodsThe intrahepatic microbiota was investigated from tumor, normal adjacent tissues in 46 patients with HCC and normal hepatic tissues in 33 patients with hemangioma by 16S rRNA gene sequencing. Taxonomic composition differences in patients were evaluated using Linear discriminant analysis Effect Size (LefSe) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) to predict microbial functional pathways. Associations between the most relevant taxa and clinical characteristics of HCC patients were analyzed by Spearman rank correlations. The effects of microbe on hepatic stellate cells (HSCs) activation and HCC progression were examined.ResultsWe observed intrahepatic microbiota disturbances by reduced microbial diversity in HCC. The tumor microbiota of the HCC patients with cirrhosis showed higher abundance of Stenotrophomonas maltophilia (S. maltophilia). S. maltophilia provoked senescence-associated secretory phenotype (SASP) in HSCs by activating TLR-4-mediated NF-κB signaling pathway, which in turn induced NLRP3 inflammasome complex formation and secreted various inflammatory factors in the liver, thus facilitating HCC progression in mice. Moreover, signs of SASP were also observed in the HSCs in the area of HCC with higher S. maltophilia enrichment arising in patients with cirrhosis.ConclusionsOur analysis of the hepatic microbiota revealed for the first time that patients with HCC exhibited a dysbiotic microbial community with higher S. maltophilia abundance, which induced the expression SASP factors of HSCs and cirrhosis in the liver, concurring in the process of hepatocarcinogenesis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260130
Author(s):  
Rehab F. Abdel-Rahman ◽  
Hany M. Fayed ◽  
Gihan F. Asaad ◽  
Hanan A. Ogaly ◽  
Alyaa F. Hessin ◽  
...  

The objective of the current study is to investigate the effect of rice bran oil (RBO) on hepatic fibrosis as a characteristic response to persistent liver injuries. Rats were randomly allocated into five groups: the negative control group, thioacetamide (TAA) group (thioacetamide 100 mg/kg thrice weekly for two successive weeks, ip), RBO 0.2 and 0.4 groups (RBO 0.2mL and 0.4 mL/rat/day, po) and standard group (silymarin 100 mg/kg/day, po) for two weeks after TAA injection. Blood and liver tissue samples were collected for biochemical, molecular, and histological analyses. Liver functions, oxidative stress, inflammation, liver fibrosis markers were assessed. The obtained results showed that RBO reduced TAA-induced liver fibrosis and suppressed the extracellular matrix formation. Compared to the positive control group, RBO dramatically reduced total bilirubin, AST, and ALT blood levels. Furthermore, RBO reduced MDA and increased GSH contents in the liver. Simultaneously RBO downregulated the NF-κβ signaling pathway, which in turn inhibited the expression of some inflammatory mediators, including Cox-2, IL-1β, and TNF-α. RBO attenuated liver fibrosis by suppressing the biological effects of TGF-β1, α-SMA, collagen I, hydroxyproline, CTGF, and focal adhesion kinase (FAK). RBO reduced liver fibrosis by inhibiting hepatic stellate cell activation and modulating the interplay among the TGF-β1 and FAK signal transduction. The greater dosage of 0.4 mL/kg has a more substantial impact. Hence, this investigation presents RBO as a promising antifibrotic agent in the TAA model through inhibition of TGF-β1 /FAK/α-SMA.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 98
Author(s):  
Yong-Joo Park ◽  
Dong-Min Kim ◽  
Hye-Been Choi ◽  
Mi-Ho Jeong ◽  
Seung-Hwan Kwon ◽  
...  

Hepatic fibrosis results from chronic liver damage and is characterized by excessive accumulation of extracellular matrix (ECM). In this study, we showed that dendropanoxide (DPX), isolated from Dendropanax morbifera, had anti-fibrotic effects on hepatic fibrosis by inhibiting hepatic stellate cell (HSC) activation. DPX suppressed mRNA and protein expression of α-SMA, fibronectin, and collagen in activated HSCs. Moreover, DPX (40 mg/kg) treatment significantly lowered levels of liver injury markers (aspartate aminotransferase and alanine transaminase), expression of fibrotic markers, and deposition of ECM in a carbon tetrachloride-induced mouse model. Anti-fibrotic effects of DPX were comparable to those of silymarin in a hepatic fibrosis mouse model. As a possible mechanism of anti-fibrotic effects, we showed that DPX inhibited autophagosome formation (LC3B-II) and degradation of p62, which have important roles in HSC activation. These findings suggest that DPX inhibits HSC activation by inhibiting autophagy and can be utilized in hepatic fibrosis therapy.


Author(s):  
Enis Kostallari ◽  
Bo Wei ◽  
Delphine Sicard ◽  
Jiahui Li ◽  
Shawna A. Cooper ◽  
...  

The fibrogenic wound-healing response in liver increases stiffness. Stiffness mechano-transduction in turn amplifies fibrogenesis. Here, we aimed to understand the distribution of stiffness in fibrotic liver, how it impacts hepatic stellate cell (HSC) heterogeneity and identify mechanisms by which stiffness amplifies fibrogenic responses. Magnetic resonance elastography and atomic force microscopy demonstrated a heterogenous distribution of liver stiffness at macroscopic and microscopic levels, respectively, in a carbon tetrachloride (CCl4) mouse model of liver fibrosis as compared to controls. High stiffness was mainly attributed to extracellular matrix dense areas. To identify a stiffness-sensitive HSC sub-population, we performed scRNA-seq on primary HSCs derived from healthy versus CCl4-treated mice. A sub-cluster of HSCs was matrix-associated with the most upregulated pathway in this sub-population being focal adhesion signaling, including a specific protein termed four and a half LIM domains protein 2 (FHL2). In vitro, FHL2 expression was increased in primary human HSCs cultured on stiff matrix as compared to HSCs on soft matrix. Moreover, FHL2 knockdown inhibited fibronectin and collagen 1 expression, whereas its overexpression promoted matrix production. In summary, we demonstrate stiffness heterogeneity at the whole organ, lobular, and cellular level which drives an amplification loop of fibrogenesis through specific focal adhesion molecular pathways.


Gut ◽  
2021 ◽  
pp. gutjnl-2021-325065
Author(s):  
Chen-Ting Hung ◽  
Tung-Hung Su ◽  
Yen-Ting Chen ◽  
Yueh-Feng Wu ◽  
You-Tzung Chen ◽  
...  

Background and objectivesLiver fibrosis (LF) occurs following chronic liver injuries. Currently, there is no effective therapy for LF. Recently, we identified thioredoxin domain containing 5 (TXNDC5), an ER protein disulfide isomerase (PDI), as a critical mediator of cardiac and lung fibrosis. We aimed to determine if TXNDC5 also contributes to LF and its potential as a therapeutic target for LF.DesignHistological and transcriptome analyses on human cirrhotic livers were performed. Col1a1-GFPTg, Alb-Cre;Rosa26-tdTomato and Tie2-Cre/ERT2;Rosa26-tdTomato mice were used to determine the cell type(s) where TXNDC5 was induced following liver injury. In vitro investigations were conducted in human hepatic stellate cells (HSCs). Col1a2-Cre/ERT2;Txndc5fl/fl (Txndc5cKO) and Alb-Cre;Txndc5fl/fl (Txndc5Hep-cKO) mice were generated to delete TXNDC5 in HSCs and hepatocytes, respectively. Carbon tetrachloride treatment and bile duct ligation surgery were employed to induce liver injury/fibrosis in mice. The extent of LF was quantified using histological, imaging and biochemical analyses.ResultsTXNDC5 was upregulated markedly in human and mouse fibrotic livers, particularly in activated HSC at the fibrotic foci. TXNDC5 was induced by transforming growth factor β1 (TGFβ1) in HSCs and it was both required and sufficient for the activation, proliferation, survival and extracellular matrix production of HSC. Mechanistically, TGFβ1 induces TXNDC5 expression through increased ER stress and ATF6-mediated transcriptional regulation. In addition, TXNDC5 promotes LF by redox-dependent JNK and signal transducer and activator of transcription 3 activation in HSCs through its PDI activity, activating HSCs and making them resistant to apoptosis. HSC-specific deletion of Txndc5 reverted established LF in mice.ConclusionsER protein TXNDC5 promotes LF through redox-dependent HSC activation, proliferation and excessive extracellular matrix production. Targeting TXNDC5, therefore, could be a potential novel therapeutic strategy to ameliorate LF.


2021 ◽  
pp. 821-829
Author(s):  
N. Luo ◽  
J. Li ◽  
Y. Wei ◽  
J. Lu ◽  
R. Dong

Hepatic stellate cells (HSCs) are located in the space of Disse, between liver sinusoidal endothelia cells (LSECs) and hepatocytes. They have surprised and excited hepatologists for their biological characteristics. Under physiological quiescent conditions, HSCs are the major vitamin A-storing cells of the liver, playing crucial roles in the liver development, regeneration, and tissue homeostasis. Upon injury-induced activation, HSCs convert to a pro-fibrotic state, producing the excessive extracellular matrix (ECM) and promoting angiogenesis in the liver fibrogenesis. Activated HSCs significantly contribute to liver fibrosis progression and inactivated HSCs are key to liver fibrosis regression. In this review, we summarize the comprehensive understanding of HSCs features, including their roles in normal liver and liver fibrosis in hopes of advancing the development of emerging diagnosis and treatment for hepatic fibrosis.


Sign in / Sign up

Export Citation Format

Share Document