The Importance of Enzyme Inhibition Kinetics for the Effect of Thrombin Inhibitors in a Rat Model of Arterial Thrombosis

1997 ◽  
Vol 78 (04) ◽  
pp. 1286-1292 ◽  
Author(s):  
Margareta Elg ◽  
David Gustafsson ◽  
Johanna Deinum

SummaryThe relation between the antithrombotic effect in vivo, and the inhibition constant (K i) and the association rate constant (k on) in vitro was investigated for eight different thrombin inhibitors. The carotid arteries of anaesthetized rats were exposed to FeCl3 for 1 h, and the thrombus size was determined from the amount of incorporated 125I- fibrinogen. The thrombin inhibitors were given intravenously, and complete concentration- and/or dose-response curves were constructed. Despite a 50,000-fold difference between the k i-values comparable plasma concentrations of hirudin and melagatran were needed (0.14 and 0.12 μmol 1-1, respectively) to obtain a 50% antithrombotic effect (IC50) in vivo. In contrast, there was a comparable in vitro (k i-value) and in vivo (IC50) potency ratio for melagatran and inogatran, respectively. These results can be explained by the concentration of thrombin in the thrombus and improved inhibition by the low-molecular-weight compounds. For all eight thrombin inhibitors tested, there was an inverse relationship between k on-values in vitro and the slope of the dose response curves in vivo. Inhibitors with k on-values of <1 X 107 M-1 s-1 gave steep dose response curves with a Hill coefficient >1. The association time for inhibition of thrombin for slow-binding inhibitors will be too long to give effective antithrombotic effects at low plasma concentrations, but at increasing concentrations the association time will decrease, resulting in a steeper dose-response curve and thereby a more narrow therapeutic interval.

Author(s):  
Shensheng Zhao ◽  
Sebastiaan Wesseling ◽  
Bert Spenkelink ◽  
Ivonne M. C. M. Rietjens

AbstractThe present study predicts in vivo human and rat red blood cell (RBC) acetylcholinesterase (AChE) inhibition upon diazinon (DZN) exposure using physiological based kinetic (PBK) modelling-facilitated reverse dosimetry. Due to the fact that both DZN and its oxon metabolite diazoxon (DZO) can inhibit AChE, a toxic equivalency factor (TEF) was included in the PBK model to combine the effect of DZN and DZO when predicting in vivo AChE inhibition. The PBK models were defined based on kinetic constants derived from in vitro incubations with liver fractions or plasma of rat and human, and were used to translate in vitro concentration–response curves for AChE inhibition obtained in the current study to predicted in vivo dose–response curves. The predicted dose–response curves for rat matched available in vivo data on AChE inhibition, and the benchmark dose lower confidence limits for 10% inhibition (BMDL10 values) were in line with the reported BMDL10 values. Humans were predicted to be 6-fold more sensitive than rats in terms of AChE inhibition, mainly because of inter-species differences in toxicokinetics. It is concluded that the TEF-coded DZN PBK model combined with quantitative in vitro to in vivo extrapolation (QIVIVE) provides an adequate approach to predict RBC AChE inhibition upon acute oral DZN exposure, and can provide an alternative testing strategy for derivation of a point of departure (POD) in risk assessment.


1987 ◽  
Vol 253 (4) ◽  
pp. G497-G501 ◽  
Author(s):  
R. Leth ◽  
B. Elander ◽  
U. Haglund ◽  
L. Olbe ◽  
E. Fellenius

The histamine H2-receptor on the human parietal cell has been characterized by using dose-response curves and the negative logarithm of the molar concentration of an antagonist (pA2) analyses of cimetidine antagonism of betazole, histamine, and impromidine stimulation in isolated human and rabbit gastric glands. To evaluate the in vitro results, betazole-stimulated gastric acid secretion with and without cimetidine was also studied in healthy subjects. In the in vivo model, individual dose-response curves were shifted to the right with increasing cimetidine concentrations, but this was counteracted by increasing betazole doses, indicating competitive, reversible antagonism. The pA2 values ranged from 6.1 to 6.3. In isolated human gastric glands, impromidine was shown to be eight times more potent than histamine, indicating higher receptor affinity, but the maximally stimulated aminopyrine accumulation was the same as for histamine, and the pA2 values for cimetidine antagonism did not differ significantly, i.e., 5.7 (histamine) and 6.1 (impromidine). In isolated rabbit gastric glands, cimetidine inhibited the histamine- and impromidine-stimulated response with pA2 values of 6.0 and 7.3, respectively. Impromidine was shown to be approximately 100 times more potent than in human gastric glands, whereas histamine had the same potency. This confirms the role of the histamine H2-receptor and suggests a difference between the species concerning receptor affinity.


2017 ◽  
Author(s):  
Andrew K. Smith ◽  
Yanli Xu ◽  
Glen E.P. Ropella ◽  
C. Anthony Hunt

AbstractAn improved understanding of in vivo-to-in vitro hepatocyte changes is crucial to interpreting in vitro data correctly and further improving hepatocyte-based in vitro-to-in vivo extrapolations to human targets. We demonstrate using virtual experiments as a means to help untangle plausible causes of inaccurate extrapolations. We start with virtual mice that have biomimetic software livers. Earlier, using those mice, we discovered model mechanisms that enabled achieving quantitative validation targets while also providing plausible causal explanations for temporal characteristics of acetaminophen hepatotoxicity. We isolated virtual hepatocytes, created a virtual culture, and then conducted dose-response experiments in both culture and mice. We expected the two dose-response curves to be displaced. We were surprised that they crossed because it evidenced that simulated acetaminophen metabolism and toxicity are different for virtual culture and mouse contexts even though individual hepatocyte mechanisms were unchanged. Crossing dose-response curves is a virtual example of an in vivo-to-in vitro disconnect. We use detailed results of experiments to explain the disconnect. Individual hepatocytes contribute differently to system level phenomena. In liver, hepatocytes are exposed to acetaminophen sequentially. Relative production of the reactive acetaminophen metabolite is largest (smallest) in pericentral (periportal) hepatocytes. Because that sequential exposure is absent in culture, hepatocytes from different lobular locations do not respond the same. A virtual Culture-to-Mouse translation can stand as a scientifically challengeable theory explaining an in vitro-in vivo disconnect. It provides a framework to develop more reliable interpretations of in vitro observations, which then may be used to improve extrapolations.AbbreviationsaHPCanalog hepatocyteAPAPacetaminophenCVCentral VeinSSsinusoidal segmentNAPQIN-acetyl-p-benzoquinone iminemitoDmitochondrial damage productsnonMDnon-mitochondrial damage products


Blood ◽  
2004 ◽  
Vol 104 (8) ◽  
pp. 2291-2298 ◽  
Author(s):  
Jean-Michel Paulus ◽  
Najet Debili ◽  
Frédéric Larbret ◽  
Jack Levin ◽  
William Vainchenker

Abstract To assess the variation of thrombopoietin (TPO) responsiveness associated with megakaryocyte (MK) progenitor amplification, TPO dose-response curves were obtained for normal human, single-cell plated CD34+CD41+ cells. The number of MKs per well was determined in situ and expressed as number of doublings (NbD). Dose-response curves of the mean frequency of clones of each size versus log TPO concentration showed highly significant differences in the TPO concentration needed for half-maximum generation of clones of different sizes (TPO50): 1.89 ± 0.51 pg/mL for 1 MK clones; 7.75 ± 0.81 pg/mL for 2 to 3 MK clones; 38.5 ± 5.04 pg/mL for 4 to 7 MK clones, and 91.8 ± 16.0 pg/mL for 8 to 15 MK clones. These results were consistent with a prediction of the generation-age model, because the number of previous doublings in vivo was inversely correlated with the number of residual doublings in vitro. TPO responsiveness decreased in vitro by a factor of 3.5 per doubling, reflecting the recruitment of progressively more ancestral progenitors. In support of this hypothesis, the more mature CD34+CD41+CD42+ cell fraction had a lower TPO50 (P &lt; .001), underwent fewer NbD (P &lt; .001), and expressed a 2.8-fold greater median Mpl receptor density (P &lt; .001) than the CD34+CD41+CD42– fraction. Progenitors that have completed their proliferative program have maximum factor responsiveness and are preferentially induced to terminal differentiation.


1969 ◽  
Vol 60 (1) ◽  
pp. 173-176 ◽  
Author(s):  
H. B. Devaraj Sarkar ◽  
M. Appaswamy Rao

ABSTRACT The effect of thiourea on ovulation in vitro in the skipper frog was investigated. Graded doses of thiourea were administered both in vivo and in vitro respectively. Dose response curves were obtained for the reduction of the ovulatory response. The results indicate that thiourea acts directly on the ovary by reducing its ovulatory response to the pituitary gonadotrophins.


1984 ◽  
Vol 57 (5) ◽  
pp. 1502-1506 ◽  
Author(s):  
G. A. Gronert ◽  
R. S. Matteo ◽  
S. Perkins

Ten dogs developed unilateral gastrocnemius disuse atrophy after unilateral hindlimb immobilization in a cast for 25 days. Dose-response curves to dimethyl tubocurarine (MTC) were determined during anesthesia with pentobarbital sodium-N2O. Bolus and continuous infusion increments of MTC every 30 min provided steady-state blood levels at each stage of paralysis. Both gastrocnemius tendons were sectioned and attached to transducers. Both sciatic nerves were stimulated every 30 min: 2 Hz for 2 s, a 15-s pause, 50 Hz for 2 s. Dose-response curves, computer calculated by nonlinear regression using a sigmoid maximal effect model of the Hill equation, were parallel for the data relating blocking of tetanus to dose of MTC. The 50% paralyzing dose (tetanus) for control vs. casted gastrocnemius muscle was 64 vs. 813 mg/kg; corresponding plasma concentrations were 0.12 vs. 2.0 micrograms/ml. Thus in vivo simultaneous tension measurements of both gastrocnemius muscles, one casted and one uncasted, demonstrated resistance to paralysis by MTC in muscle with disuse atrophy.


Sign in / Sign up

Export Citation Format

Share Document