In Vivo Activity of Tieclopidine, a New Drug with Platelet Aggregation Inhibiting, Antisludge and Antithrombotic Properties

1975 ◽  
Author(s):  
J. C. Ferrand ◽  
D. Aubert ◽  
B. Lacaze ◽  
O. Pepin ◽  
J. J. Thebault

Tieclopidine (53–32 C) belongs to a new series of synthetic compounds which have proved to inhibit significantly blood platelet aggregation in animals. Administered orally to rats, it reduces markedly the plate let aggregation induced by ADP and collagen. The activity appears 2 to 6 hours after a single dose and persists for 24 hours.The sludge and blood stasis induced in rats by protamin sulfate injections disappear completely in five minutes after an intravenous administration of Thieclopidine. Animals pretreated orally with this compound failed to show any sludge formation.The antithrombotic activity of Tieclopidine was demonstrated in rats carrying a dental broach implanted in the abdominal aorta. White thrombideveloped locally in the control animals, but were absent or much less severe in pretreated animals.In man the first clinical approach has shown that at a daily dose of 1 g the inhibitory effect of Tieclopidine on ADP induced aggregation requires 24 to 48 hrs to become significant and reaches a plateau after 5 or 6 days of treatment.

Author(s):  
R. Castillo ◽  
S. Maragall ◽  
J. A. Guisasola ◽  
F. Casals ◽  
C. Ruiz ◽  
...  

Defective ADP-induced platelet aggregation has been observed in patients treated with streptokinase. This same effect appears “in vitro” when adding SK to platelet rich plasma (PRP). Classic hemophilia and normal platelet poor plasmas (PPP) treated with SK inhibit the aggregation of washed platelets; plasmin-treated normal human serum also shows an inhibitory effect on platelet aggregation. However, von Willebrand SK-treated plasmas do not inhibit the aggregation of washed platelets. The same results appear when plasmas are previously treated with a rabbit antibody to human factor VIII.This confirms that the antiaggregating effect is mainly linked to the digested factor VIII related antigen.The inhibition of ADP-induced platelet aggregation has been proved in gel filtration-isolated and washed platelets from SK-treated PRP.Defective ristocetin-induced platelet aggregation has also been observed- This action does not appear in washed platelets from SK-treated PRP in presence of normal PPP, but it does in presence of SK-treated PPP, which suggests that the inhibition of the ristocetin-induced aggregation is due to the lack of factor VIII and not to the factor VIII-related products.Heparin, either “in vivo” or “in vitro”, has corrected the antiaggregating effect of SK.


1981 ◽  
Author(s):  
J S Fleming ◽  
B T Cornish ◽  
J O Buchanan ◽  
J P Buyniski

Prostacyclin and thromboxane A2, two of the physiologically most important end products of arachidonic acid metabolism, represent a basic control system which modulates platelet function. Decreased vascular prostacyclin is believed to play a role in the increased thrombotic tendency associated with various clinical diseases including diabetes and atherosclerosis. Compounds which either enhance the formation or release of prostacyclin or potentiate the activity of low levels of prostacyclin may be therapeutically useful in ameliorating this associated pathology. We have studied various inhibitors of platelet aggregation for their ability to potentiate the activity of low levels of prostacyclin both in vitro and in an in vivo model of experimental thrombosis. Anagrelide, aspirin, dipyridamole, sulfinpyrazone and ticlopidine all demonstrated interaction with prostacyclin in vitro against collagen-induced platelet aggregation. More limited interactions were observed against ADP-induced aggregation. Using isobolographic analysis most combinations demonstrated additive interaction. However, pronounced supra-additive interaction was observed vs. both aggregating agents in the case of prostacyclin (0.1-1 ng/ml) - anagrelide (8-90 ng/ml) combinations. Dramatic enhancement of the effects of prostacyclin on biolaser-induced thrombosis was also seen in anagrelide (0.5 mg/kg po) pretreated animals. Other inhibitors of platelet aggregation used in combination with prostacyclin produced less spectacular results. These findings suggest that aside from inherent antiaggregatory and antithrombotic activity, certain platelet active drugs may produce equally important effects by virtue of their ability to interact with prostacyclin in a clinically beneficial manner.


1981 ◽  
Author(s):  
H D Lehmann ◽  
J Gries ◽  
D Lenke

6- [p-(2-(Chiorpropionylamino)phenyl] -4.5-dihydro-5-methyl-3(2H)-pyridazinone, LU 23051, is primarily characterized by its strong inhibition of platelet aggregation under in vitro and in vivo conditions. In vitro there is a concentration-dependent inhibition of ADP and collagen induced aggregation in platelet rich plasma of man, rat and dog. The inhibitory concentration EC 33 % is 0.0010-0.030 mg/1 (man: ADP-0.030, col 1.-0.013 mg/l) depending on species and type of aggregation. When administered orally in ex vivo experiments on rats and dogs the substance is found to have a dose-dependent antiaggregatory effect in the range from 0.1-3.16 mg/kg. The ED 33 % is 0.27-0.63 mg/kg.-In addition after oral administration the substance has a good inhibitory effect in models being based on intravascular platelet aggregation. Thus, a dose of 1 mg/kg inhibits laser-induced aggregation in mesenteric venules of rats. Mortality after i.v. injection of collagen in mice is reduced by 50 % after a dose of 0.02 mg/kg. A dose of 0.039 mg/kg prolongs the bleeding time of rats by 50 %. The aggregation-inhibiting action is of long duration (0.1 mg/kg p.o.∼24 h). The substance does not interfere with clotting.Besides its effect on platelet aggregation LU 23051 acts as vasodilatator as well. Dilatation of coronary vessels by 100 % is seen in isolated guinea-pig hearts at a concentration of 0.1 mg/l. In spontaneously hypertensive rats the substance has an anti hypertensive effect. The ED 20 % is 0.36 mg/kg p.o.The combination of antiaggregatory and vasodilatatory effects opens up interesting aspects with respect to the pharmacotherapeutic use of the new substance


2012 ◽  
Vol 123 (10) ◽  
pp. 591-600 ◽  
Author(s):  
Alexander O. Spiel ◽  
Ulla Derhaschnig ◽  
Michael Schwameis ◽  
Johann Bartko ◽  
Jolanta M. Siller-Matula ◽  
...  

P2Y12 receptor antagonists have become a mainstay for the treatment of CVD (cardiovascular diseases). However, they have rarely been evaluated under pathophysiological conditions apart from arterial diseases. We hypothesized interactions between prasugrel and enhanced vWF (von Willebrand Factor) release in a model of systemic inflammation, and compared the pharmacodynamic effects of prasugrel against placebo on agonist-induced platelet aggregation and shear-induced platelet plug formation. A total of 20 healthy male volunteers were enrolled in a double-blind placebo-controlled two-way crossover trial. Each volunteer received either placebo or a 60 mg loading dose of prasugrel 2 h before endotoxin or placebo infusion. Platelet inhibition was measured with MEA (multiple electrode aggregometry), the PFA-100 system and the VASP (vasodilator-stimulated phosphoprotein) phosphorylation assay. Prasugrel blunted various platelet aggregation pathways, including those induced by ADP (−81%), AA (arachidonic acid) (−60%), ristocetin (−75%; P<0.001 for all) and, to a lesser degree, collagen or TRAP (thrombin-receptor-activating peptide). Prasugrel decreased shear-induced platelet plug formation, but vWF release during endotoxaemia partly antagonized the inhibitory effect of prasugrel as measured with the PFA-100 system. Endotoxaemia acutely decreased ristocetin and TRAP-induced platelet aggregation, and enhanced ristocetin-induced aggregation after 24 h. Strong in vivo blockade of P2Y12 inhibits a broad spectrum of platelet aggregation pathways. However, vWF release may reduce prasugrel's effects under high-shear conditions.


1987 ◽  
Vol 58 (02) ◽  
pp. 744-748 ◽  
Author(s):  
A R Saniabadi ◽  
G D O Lowe ◽  
J C Barbenel ◽  
C D Forbes

SummarySpontaneous platelet aggregation (SPA) was studied in human whole blood at 3, 5, 10, 20, 30, 40 and 60 minutes after venepuncture. Using a whole blood platelet counter, SPA was quantified by measuring the fall in single platelet count upon rollermixing aliquots of citrated blood at 37° C. The extent of SPA increased with the time after venepuncture, with a correlation coefficient of 0.819. The inhibitory effect of dipyridamole (Dipy) on SPA was studied: (a) 10 μM at each time interval; (b) 0.5-100 μM at 3 and 30 minutes and (c) 15 μM in combination with 100 μM adenosine, 8 μM 2-chloroadenosine (2ClAd, an ADP receptor blocker) and 50 μM aspirin. There was a rapid decrease in the inhibitory effect of Dipy with the time after venepuncture; the correlation coefficient was -0.533. At all the concentrations studied, Dipy was more effective at 3 minutes than at 30 minutes after venepuncture. A combination of Dipy with adenosine, 2ClAd or aspirin was a more effective inhibitor of SPA than either drug alone. However, when 15 μM Dipy and 10 μM Ad were added together, the inhibitory effect of Dipy was not increased significantly, suggesting that Dipy inhibits platelet aggregation independent of Ad. The increase in SPA with the time after venepuncture was abolished when blood was taken directly into the anticoagulant containing 5 μM 2ClAd. It is suggested that ADP released from the red blood cells is responsible for the increased platelet aggregability with the time after venepuncture and makes a serious contribution to the artifacts of in vitro platelet function studies.


1974 ◽  
Vol 32 (02/03) ◽  
pp. 417-431 ◽  
Author(s):  
A. du P Heyns ◽  
D. J van den Berg ◽  
G. M Potgieter ◽  
F. P Retief

SummaryThe platelet aggregating activity of extracts of different layers of the arterial wall was compared to that of Achilles tendon. Arterial media and tendon extracts, adjusted to equivalent protein content as an index of concentration, aggregated platelets to the same extent but an arterial intima extract did not aggregate platelets. Platelet aggregation induced by collagen could be inhibited by mixing with intima extract, but only to a maximum of about 80%. Pre-mixing adenosine diphosphate (ADP) with intima extracts diminished the platelet aggregation activity of the ADP. Depending on the relationship between ADP and intima extract concentrations aggregating activity could either be completely inhibited or inhibition abolished. Incubation of ADP with intima extract and subsequent separation of degradation products by paper chromatography, demonstrated a time-dependent breakdown of ADP with AMP, adenosine, inosine and hypoxanthine as metabolic products; ADP removal was complete. Collagen, thrombin and adrenaline aggregate platelets mainly by endogenous ADP of the release reaction. Results of experiments comparing inhibition of aggregation caused by premixing aggregating agent with intima extract, before exposure to platelets, and the sequential addition of first the intima extract and then aggregating agent to platelets, suggest that the inhibitory effect of intima extract results from ADP breakdown. It is suggested that this ADP degradation by intima extract may play a protective role in vivo by limiting the size of platelet aggregates forming at the site of minimal “wear and tear” vascular trauma.


1972 ◽  
Vol 28 (01) ◽  
pp. 031-048 ◽  
Author(s):  
W. H. E Roschlau ◽  
R Gage

SummaryInhibition of blood platelet aggregation by brinolase (fibrinolytic enzyme from Aspergillus oryzae) has been demonstrated with human platelets in vitro and with dog platelets in vivo and in vitro, using both ADP and collagen as aggregating stimuli. It is suggested that the optimal inhibitory effects of brinolase occur indirectly through the generation of plasma fibrinogen degradation products, without compromising platelet viability, rather than by direct proteolysis of platelet structures.


1973 ◽  
Vol 30 (02) ◽  
pp. 315-326
Author(s):  
J. Heinz Joist ◽  
Jean-Pierre Cazenave ◽  
J. Fraser Mustard

SummarySodium pentobarbital (SPB) and three other barbituric acid derivatives were found to inhibit platelet function in vitro. SPB had no effect on the primary response to ADP of platelets in platelet-rich plasma (PRP) or washed platelets but inhibited secondary aggregation induced by ADP in human PRP. The drug inhibited both phases of aggregation induced by epinephrine. SPB suppressed aggregation and the release reaction induced by collagen or low concentrations of thrombin, and platelet adherence to collagen-coated glass tubes. The inhibition by SPB of platelet aggregation was readily reversible and isotopically labeled SPB did not become firmly bound to platelets. No inhibitory effect on platelet aggregation induced by ADP, collagen, or thrombin could be detected in PRP obtained from rabbits after induction of SPB-anesthesia.


1985 ◽  
Vol 54 (03) ◽  
pp. 612-616 ◽  
Author(s):  
A J Carter ◽  
S Heptinstall

SummaryThe platelet aggregation that occurred in whole blood in response to several aggregating agents (collagen, arachidonic acid, adenosine diphosphate, adrenaline and thrombin) was measured using an Ultra-Flo 100 Whole Blood Platelet Counter. The amounts of thromboxane B2 produced were measured by radioimmunoassay. The effects of various inhibitors of thromboxane synthesis and the effects of apyrase, an enzyme that destroys adenosine diphosphate, were determined.Platelet aggregation was always accompanied by the production of thromboxane B2, and the amounts produced depended on the nature and concentration of the aggregating agent used. The various inhibitors of thromboxane synthesis - aspirin and flurbiprofen (cyclo-oxygenase inhibitors), BW755C (a cyclo-oxygenase and lipoxygenase inhibitor) and dazoxiben (a selective thromboxane synthase inhibitor) - did not markedly inhibit aggregation. Results obtained using apyrase showed that adenosine diphosphate contributed to the aggregation process, and that its role must be acknowledged when devising means of inhibiting platelet aggregation in vivo.


1964 ◽  
Vol 12 (01) ◽  
pp. 179-200 ◽  
Author(s):  
Torstein Hovig

SummaryThe effect of calcium and magnesium on the aggregation of rabbit blood platelets in vitro was studied, with the following results:1. Platelet aggregation induced by ADP or collagen could be prevented by EGTA or EDTA. The aggregating effect was restored by recalcification. The effect was also restored by addition of magnesium in EDTA-PRP, but not in EGTA-PRP unless a surplus of calcium was present.2. Calcium remained in concentrations of the order of 0.15–0.25 mM after dialysis or cation exchange of plasma. Aggregation of washed platelets resuspended in such plasma could not be produced with ADP or collagen, unless the calcium concentration was increased or that magnesium was added.3. The adhesiveness of blood platelets to collagen was reduced in EGTA-PRP and EDTA-PRP. Release of ADP from platelets influenced by collagen could not be demonstrated either in EGTA-PRP (presence of magnesium) or in EDTA-PRP.4. It is concluded that calcium is a necessary factor both for the reaction leading to release of ADP and for the the aggregation produced by ADP.5. Thrombin induced aggregation of washed platelets suspended in tris-buffered saline in the presence of calcium. No effect of magnesium could be observed unless small quantities of calcium were present.


Sign in / Sign up

Export Citation Format

Share Document