whole blood
Recently Published Documents


TOTAL DOCUMENTS

14765
(FIVE YEARS 2559)

H-INDEX

135
(FIVE YEARS 17)

2022 ◽  
Vol 352 ◽  
pp. 131030
Author(s):  
Dan Fang ◽  
Tingting Xu ◽  
Leyi Fang ◽  
Huan Chen ◽  
Yangyang Huang ◽  
...  
Keyword(s):  

2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Esther Herrera-Luis ◽  
Annie Li ◽  
Angel C. Y. Mak ◽  
Javier Perez-Garcia ◽  
Jennifer R. Elhawary ◽  
...  

Abstract Introduction DNA methylation studies have associated methylation levels at different CpG sites or genomic regions with lung function. Moreover, genetic ancestry has been associated with lung function in Latinos. However, no epigenome-wide association study (EWAS) of lung function has been performed in this population. Here, we aimed to identify DNA methylation patterns associated with lung function in pediatric asthma among Latinos. Results We conducted an EWAS in whole blood from 250 Puerto Rican and 148 Mexican American children and young adults with asthma. A total of five CpGs exceeded the genome-wide significance threshold of p = 1.17 × 10−7 in the combined analyses from Puerto Ricans and Mexican Americans: cg06035600 (MAP3K6, p = 6.13 × 10−8) showed significant association with pre-bronchodilator Tiffeneau–Pinelli index, the probes cg00914963 (TBC1D16, p = 1.04 × 10−7), cg16405908 (MRGPRE, p = 2.05 × 10−8), and cg07428101 (MUC2, p = 5.02 × 10−9) were associated with post-bronchodilator forced vital capacity (FVC), and cg20515679 (KCNJ6) with post-bronchodilator Tiffeneau–Pinelli index (p = 1.13 × 10−8). However, these markers did not show significant associations in publicly available data from Europeans (p > 0.05). A methylation quantitative trait loci analysis revealed that methylation levels at these CpG sites were regulated by genetic variation in Latinos and the Biobank-based Integrative Omics Studies (BIOS) consortium. Additionally, two differentially methylated regions in REXOC and AURKC were associated with pre-bronchodilator Tiffeneau–Pinelli index (adjusted p < 0.05) in Puerto Ricans and Mexican Americans. Moreover, we replicated some of the previous differentially methylated signals associated with lung function in non-Latino populations. Conclusions We replicated previous associations of epigenetic markers with lung function in whole blood and identified novel population-specific associations shared among Latino subgroups.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sung Hye Kim ◽  
David A. MacIntyre ◽  
Lynne Sykes ◽  
Maria Arianoglou ◽  
Phillip R. Bennett ◽  
...  

MicroRNAs (miRNAs) can exhibit aberrant expression under different physiological and pathological conditions. Therefore, differentially expressed circulating miRNAs have been a focus of biomarker discovery research. However, the use of circulating miRNAs comes with challenges which may hinder the reliability for their clinical application. These include varied sample collection protocols, storage times/conditions, sample processing and analysis methods. This study focused on examining the effect of whole blood holding time on the stability of plasma miRNA expression profiles. Whole blood samples were collected from healthy pregnant women and were held at 4°C for 30 min, 2 h, 6 h or 24 h prior to processing for plasma isolation. Plasma RNA was extracted and the expression of 179 miRNAs were analyzed. Unsupervised principal component analysis demonstrated that whole blood holding time was a major source of variation in miRNA expression profiles with 53 of 179 miRNAs showing significant changes in expression. Levels of specific miRNAs previously reported to be associated with pregnancy-associated complications such as hsa-miR-150-5p, hsa-miR-191-5p, and hsa-miR-29a-3p, as well as commonly used endogenous miRNA controls, hsa-miR-16-5p, hsa-miR-25-3p, and hsa-miR-223-3p were significantly altered with increase in blood holding time. Current protocols for plasma-based miRNA profiling for diagnostics describe major differences in whole blood holding periods ranging from immediately after collection to 26 h after. Our results demonstrate holding time can have dramatic effects on analytical reliability and reproducibility. This highlights the importance of standardization of blood holding time prior to processing for plasma in order to minimize introduction of non-biological variance in miRNA profiles.


2022 ◽  
Vol 12 ◽  
Author(s):  
Beatrice E. Gee ◽  
Andrea Pearson ◽  
Iris Buchanan-Perry ◽  
Roger P. Simon ◽  
David R. Archer ◽  
...  

Whole transcriptome RNA-sequencing was performed to quantify RNA expression changes in whole blood samples collected from steady state sickle cell anemia (SCA) and control subjects. Pediatric SCA and control subjects were recruited from Atlanta (GA)—based hospital(s) systems and consented for RNA sequencing. RNA sequencing was performed on an Ion Torrent S5 sequencer, using the Ion Total RNA-seq v2 protocol. Data were aligned to the hg19 reference genome and analyzed in the Partek Genomics studio package (v7.0). 223 genes were differentially expressed between SCA and controls (± 1.5 fold change FDR p &lt; 0.001) and 441 genes show differential transcript expression (± 1.5 fold FDR p &lt; 0.001). Differentially expressed RNA are enriched for hemoglobin associated genes and ubiquitin-proteasome pathway genes. Further analysis shows higher gamma globin gene expression in SCA (33-fold HBG1 and 49-fold HBG2, both FDR p &lt; 0.05), which did not correlate with hemoglobin F protein levels. eQTL analysis identified SNPs in novel non-coding RNA RYR2 gene as having a potential regulatory role in HBG1 and HBG2 expression levels. Gene expression correlation identified JHDM1D-AS1(KDM7A-DT), a non-coding RNA associated with angiogenesis, enhanced GATA1 and decreased JAK-STAT signaling to correlate with HBG1 and HBG2 mRNA levels. These data suggest novel regulatory mechanisms for fetal hemoglobin regulation, which may offer innovative therapeutic approaches for SCA.


Vox Sanguinis ◽  
2022 ◽  
Author(s):  
Rebecca Cardigan ◽  
Tom Latham ◽  
Anne Weaver ◽  
Mark Yazer ◽  
Laura Green
Keyword(s):  

Vox Sanguinis ◽  
2022 ◽  
Author(s):  
Dirk Korte ◽  
Ido J. Bontekoe ◽  
Áine Fitzpatrick ◽  
Denese Marks ◽  
Ben Wood ◽  
...  

2022 ◽  
Vol 11 (2) ◽  
pp. 356
Author(s):  
James H. Lantry ◽  
Phillip Mason ◽  
Matthew G. Logsdon ◽  
Connor M. Bunch ◽  
Ethan E. Peck ◽  
...  

Modern approaches to resuscitation seek to bring patient interventions as close as possible to the initial trauma. In recent decades, fresh or cold-stored whole blood has gained widespread support in multiple settings as the best first agent in resuscitation after massive blood loss. However, whole blood is not a panacea, and while current guidelines promote continued resuscitation with fixed ratios of blood products, the debate about the optimal resuscitation strategy—especially in austere or challenging environments—is by no means settled. In this narrative review, we give a brief history of military resuscitation and how whole blood became the mainstay of initial resuscitation. We then outline the principles of viscoelastic hemostatic assays as well as their adoption for providing goal-directed blood-component therapy in trauma centers. After summarizing the nascent research on the strengths and limitations of viscoelastic platforms in challenging environmental conditions, we conclude with our vision of how these platforms can be deployed in far-forward combat and austere civilian environments to maximize survival.


Vox Sanguinis ◽  
2022 ◽  
Author(s):  
Sandra Ramirez‐Arcos ◽  
Yuntong Kou ◽  
Dilini Kumaran ◽  
Brankica Culibrk ◽  
Tamiko Stewart ◽  
...  

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262544
Author(s):  
Annalisa Trecarichi ◽  
Natalie A. Duggett ◽  
Lucy Granat ◽  
Samantha Lo ◽  
Afshan N. Malik ◽  
...  

Chemotherapy-induced peripheral neuropathy (CIPN) is a serious dose-limiting side effect of several first-line chemotherapeutic agents including paclitaxel, oxaliplatin and bortezomib, for which no predictive marker is currently available. We have previously shown that mitochondrial dysfunction is associated with the development and maintenance of CIPN. The aim of this study was to evaluate the potential use of mitochondrial DNA (mtDNA) levels and complex I enzyme activity as blood biomarkers for CIPN. Real-time qPCR was used to measure mtDNA levels in whole blood collected from chemotherapy- and vehicle-treated rats at three key time-points of pain-like behaviour: prior to pain development, at the peak of mechanical hypersensitivity and at resolution of pain-like behaviour. Systemic oxaliplatin significantly increased mtDNA levels in whole blood prior to pain development. Furthermore, paclitaxel- and bortezomib-treated animals displayed significantly higher levels of mtDNA at the peak of mechanical hypersensitivity. Mitochondrial complex I activity in whole blood was assessed with an ELISA-based Complex I Enzyme Activity Dipstick Assay. Complex I activity was not altered by any of the three chemotherapeutic agents, either prior to or during pain-like behaviour. These data demonstrate that blood levels of mtDNA are altered after systemic administration of chemotherapy. Oxaliplatin, in particular, is associated with higher mtDNA levels before animals show any pain-like behaviour, thus suggesting a potential role for circulating mtDNA levels as non-invasive predictive biomarker for CIPN.


2022 ◽  
Vol 20 (4) ◽  
pp. 87-94
Author(s):  
I. A. Tikhomirova ◽  
M. M. Ryabov

Introduction. Clinical experience in managing patients with a new coronavirus infection caused by the SARS-CoV-2 allowed to identify specific hemostasis disorders, and enables to introduce the concept of COVID-associated coagulopathy. The aim of the study was to assess the direction of coagulogram parameter changes, whole blood clotting parameters and characteristics of platelet and plasma hemostasis in patients with severe COVID-19. Materials and methods. The parameters of the hemostasis system were assessed using venous blood of 12 patients with severe COVID-19 and 16 healthy volunteers. The whole blood clotting process was investigated by low-frequency piezothromboelastography. The platelet count and indicators of spontaneous and ADP-induced platelet aggregation were estimated with the help of a laser platelet aggregation analyzer. Fibrinolytic activity of plasma, plasminogen activity, content of fibrinogen, D-dimer, PTT, APTT, PTI and INR were assessed. Results. An increased level of fibrinogen, a 6-fold increased D-dimer level, and increased PTT were found in patients with severe COVID-19. The patient platelets count was reduced by 51 % (p <0.05), spontaneous platelet aggregation remained at nearly normal level. Almost complete inhibition of ADP-induced platelet reactivity and inhibition of XIIa-dependent fibrinolysis was revealed, despite an increased by 19.3 % (p <0.05) plasminogen activity. Parameters of the whole blood coagulation process pointed a pronounced activation of platelet hemostasis, a significant intensification of the polymerization stage of clot formation and an increased intensity of clot lysis and retraction. Conclusion. The significant increase of D-dimer level and paradoxical inhibition of plasma fibrinolytic activity revealed by test of XIIa-dependent fibrinolysis (in contrast to the increased intensity of clot lysis when assessing the coagulation of whole blood) indicate the complex pathogenic mechanisms of coagulopathy caused by SARS-CoV-2 infection, and the involvement of blood cells and the vascular wall in the process of pathological thrombus formation.


Sign in / Sign up

Export Citation Format

Share Document