Enantioselective Intermolecular Murai-Type Alkene Hydroarylation Reactions

Synthesis ◽  
2021 ◽  
Author(s):  
John F. Bower ◽  
Timothy P. Aldhous ◽  
Raymond W. M. Chung ◽  
Andrew G. Dalling

AbstractStrategies that enable the efficient assembly of complex building blocks from feedstock chemicals are of paramount importance to synthetic chemistry. Building upon the pioneering work of Murai and co-workers in 1993, C–H-activation-based enantioselective hydroarylations of alkenes offer a particularly promising framework for the step- and atom-economical installation of benzylic stereocenters. This short review presents recent intermolecular enantioselective Murai-type alkene hydroarylation methodologies and the mechanisms by which they proceed.1 Introduction2 Enantioselective Hydroarylation Reactions of Strained Bicyclic Alkenes3 Enantioselective Hydroarylation Reactions of Electron-Rich Acyclic Alkenes4 Enantioselective Hydroarylation Reactions of Electron-Poor Acyclic Alkenes5 Enantioselective Hydroarylation Reactions of Minimally Polarized Acyclic Alkenes6 Conclusion and Outlook

2019 ◽  
Vol 16 (1) ◽  
pp. 70-97 ◽  
Author(s):  
Xiaohua Cai ◽  
Mengzhi Yang ◽  
Hui Guo

Background: Enamines and their variant enamides as powerful and versatile synthons have attracted great attention in synthetic chemistry. Enamides display unique stability and reduce enaminic reactivity in view of the electron-withdrawing effect of N-acyl group. A great deal of satisfactory achievements in the synthesis and application of enamides has been made in recent years. Especially, tertiary enamides without N-H bond regarded as low reactivity of compounds in the past can act as excellent nucleophiles to react with electrophiles for the construction of various nitrous molecules. </P><P> Objective: This review focuses on recent advances on tertiary enamides in the synthetic strategies and applications including addition, coupling reaction, functionalization and electro- or photo-chemical reaction. Conclusion: Tertiary enamides as electron-deficient nucleophiles display a satisfactory balance between stability and reactivity to offer multiple opportunities for the construction of various functionalized nitrogencontaining compounds. Further exploration of the reactive mechanisms involved tertiary enamides and the development of novel and efficient transformations to generate ever more complex building blocks starting from tertiary enamides are particularly worth pursuing.


2021 ◽  
Author(s):  
Anurag Mukherjee ◽  
Suhrit Ghosh

Naphthalene-diimide (NDI) derived building blocks have been explored extensively for supramolecular assembly as they exhibit attractive photophysical properties, suitable for applications in organic optoelectronics. Core-substituted derivatives of the NDI chromophore (cNDI) differ significantly from the parent NDI dye in terms of optical and redox properties. Adequate molecular engineering opportunities and substitution-dependent tunable optoelectronic properties make cNDI derivatives highly promising candidates for supramolecular assembly and functional material. This short review discusses recent development in the area of functional supramolecular assemblies based on cNDIs and related molecules.


Synthesis ◽  
2021 ◽  
Author(s):  
Yong-liang Su ◽  
Michael P. Doyle

α-Aminoalkyl radicals are easily accessible through multiple pathways from various precursors. Apart from their utilization as N-containing building blocks, they have recently been used as halogen atom abstraction reagents or single-electron reductants to transform organic halides or sulfonium salts to their corresponding highly reactive radical species. Benefiting from the richness of various halides and the diverse reactivity of radical intermediates, new transformations of halides and sulfonium salts have been developed. This short review summarizes this emerging chemistry that uses α-amino radicals as the reaction activators.


Synthesis ◽  
2021 ◽  
Author(s):  
Prasanjit Ghosh ◽  
Swati Lekha Mondal ◽  
Mahiuddin Baidya

The N–O heterocycles are biologically relevant scaffolds and versatile building blocks in contemporary organic synthesis. In this short review, we effort to showcase the involvement and elevation of various cycloaddition strategies towards the production of N–O heterocycles 1,2-oxazines, 1,2-oxazepanes, and 1,2-oxazetidines. A blueprint of advantages and challenges associated with these synthetic endeavors is provided.


Catalysts ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 332 ◽  
Author(s):  
Olena Vozniuk ◽  
Tommaso Tabanelli ◽  
Nathalie Tanchoux ◽  
Jean-Marc Millet ◽  
Stefania Albonetti ◽  
...  

This short review reports on spinel-type mixed oxides as catalysts for the transformation of biomass-derived building blocks into chemicals and fuel additives. After an overview of the various methods reported in the literature for the synthesis of mixed oxides with spinel structure, the use of this class of materials for the chemical-loop reforming of bioalcohols is reviewed in detail. This reaction is aimed at the production of H2 with intrinsic separation of C-containing products, but also is a very versatile tool for investigating the solid-state chemistry of spinels.


Synthesis ◽  
2020 ◽  
Vol 52 (13) ◽  
pp. 1855-1873
Author(s):  
Senthil Narayanaperumal ◽  
Ricardo S. Schwab ◽  
Wystan K. O. Teixeira ◽  
Danilo Yano de Albuquerque

Enantiomerically enriched diaryl, aryl heteroaryl, and dihetero­aryl alcohols are an important family of compounds known for their biological properties. Moreover, these molecules are highly privileged scaffolds used as building blocks for the synthesis of pharmaceutically relevant products. This short review provides background on the enantioselective arylation and heteroarylation of carbonyl compounds, as well as, the most significant improvements in this field with special emphasis on the application of organometallic reagents.1 Introduction2 Background on the Enantioselective Synthesis of Diaryl, Aryl Heteroaryl, and Diheteroaryl Alcohols3 Organozinc Reagents4 Organolithium Reagents5 Grignard Reagents6 Organoaluminum Reagents7 Organotitanium Reagents8 Organobismuth Reagents9 Miscellaneous10 Conclusion


Synthesis ◽  
2017 ◽  
Vol 49 (15) ◽  
pp. 3255-3268 ◽  
Author(s):  
Andrey Tabolin ◽  
Alexey Sukhorukov ◽  
Sema Ioffe ◽  
Alexander Dilman

Due to their availability and versatile reactivity, nitronates have become important building blocks in the stereoselective synthesis of bioactive molecules. This short review provides a summary of recent developments on the synthesis, chemistry and applications of O-alkyl and O-silyl nitronates.1 Introduction2 Approaches to the Synthesis of Nitronates2.1 Synthesis of Six-Membered Cyclic Nitronates2.1.1 Formal [4+2] Approaches2.1.2 Formal [3+3] Approaches2.1.3 Other Approaches2.2 Synthesis of Five-Membered Cyclic Nitronates2.2.1 Formal [3+2] Approaches2.2.2 Formal [4+1] Approaches2.2.3 Oxidation Approaches3 Chemistry of Nitronates3.1 Nitronates as α-C-Nucleophiles3.2 Nitronates as α-C-Electrophiles3.3 Nitronates in [3+n]-Annulation Reactions3.4 Reactions Involving the β-Carbon Atom of Nitronates3.5 Miscellaneous Transformations4 Conclusion


2009 ◽  
Vol 74 (5) ◽  
pp. 651-769 ◽  
Author(s):  
Alain Braun ◽  
Il Hwan Cho ◽  
Stephane Ciblat ◽  
Dean Clyne ◽  
Pat Forgione ◽  
...  

Enantioselective approaches to the construction of four complex building blocks of the structurally intricate marine macrolide known as spongistatin 1 are presented. The first phase of the synthetic effort relies on a practical approach to a desymmetrized, enantiomerically pure spiroketal ring system incorporating rings A and B. Concurrently, the C17–C28 subunit, which houses one-fifth of the stereogenic centers of the target in the form of rings C and D, was assembled via a composite of stereocontrolled aldol condensations. Once arrival at the entire C1–C28 sector had been realized, routes were devised to provide two additional highly functionalized sectors consisting of C29–C44 and C38–C51. A series of subsequent transformations including cyclization of the E ring and hydroboration to afford the B-alkyl intermediate for the key Suzuki coupling to append the side chain took advantage of efficient stereocontrol. Ultimately, complete assembly and functionalization of the western EF sector of spongistatin was thwarted by an inoperative Suzuki coupling step intended to join the side chain to the C29–C44 sector, and later because of complications due to protecting groups, which precluded the complete elaboration of the late stage C29–C51 intermediate.


Sign in / Sign up

Export Citation Format

Share Document