scholarly journals Implant Impression Making: Take-Off Guide for Beginners

Author(s):  
Aaina Dhanda ◽  
Tarun Kalra ◽  
Manjit Kumar ◽  
Ajay Bansal ◽  
Ruchi Sharma

AbstractDental implants are fixtures that constitute for the replacements of the root of a missing natural tooth. Dental implant therapy has been widely used for the restoration of partially and fully edentulous patients. The implant literature emphasizes the importance of a passively fitting prosthesis to prevent prosthodontic complications or even loss of fixture integration. Failure to achieve a passively fitting prosthesis and force tightening of superstructure may result in complications such as abutment, framework, and gold screw loosening or fracture. Various materials that can be used for making an implant impression are polyether, polyvinylsiloxane, condensation silicone, polysulfide, irreversible hydrocolloid material, and various others. There are various studies in relation to the accuracy of these impression materials out of which various scientists concluded different results with most studies stating polyether with the maximum amount of dimensional accuracy in comparison to other materials. An accurate implant impression plays a significant role and serves as a starting point in the process of producing good working casts. Thus, the accuracy of impression techniques becomes a significant issue in consideration of passive fit. Reproduction of intraoral relationship of implants through impression procedures is the first step in achieving accurate fit prosthesis. This transference is still complicated by the number, angulation, depth, and position of implants. The advent of computer-aided design/computer-assisted manufacturing technology improved the framework fabrication procedures and has increased the precision of fit of implant prosthesis.

2021 ◽  
Vol 38 (SI-2) ◽  
pp. 92-97
Author(s):  
Emir YÜZBAŞIOĞLU ◽  
Yeşim ÖLÇER US ◽  
Gökhan ÖZDEMİR ◽  
Berkman ALBAYRAK

For decades, conventional complete dentures (CD) have been a promising treatment for edentulous patients. The introduction of digital technology in CD fabrication streamlines and simplifies the treatment process and offers new and specific applications for the completely edentulous patients. Computer-aided design/computer-assisted manufactured (CAD/CAM) CD protocols can improve efficiency and offer specific applications in specific situations to improve patient care, satisfaction, and convenience. The aim of this review is to assess and evaluate the clinical outcomes and complication of CAD/CAM fabricated CD systems and to provide information about currently available systems for dental practitioners.


2021 ◽  
Vol 11 (9) ◽  
pp. 3933
Author(s):  
Chol-Gwan Han ◽  
Young-Bum Park ◽  
June-Sung Shim ◽  
Jong-Eun Kim

Improvements in computer-aided design/computer-aided manufacturing technologies have led to multiple attempts being made to simplify and improve the workflow of prosthesis fabrication for completely edentulous patients. However, most attempts still involve the conventional methods of impression-making and recording the maxillomandibular relationships using alginate, rubber impression materials, and wax materials. In the case of a completely edentulous arch, the presence of movable tissues and the absence of stable landmarks make it difficult to perform direct digitization using an intraoral scanner and to digitally determine the vertical dimension. In the alternative technique described herein, data are obtained by scanning a template such as the patient’s existing old dentures and jaw movement data using target materials and an optical scanner, and an appropriate maxillomandibular relationship that has the desired restorative space is determined on the basis of the obtained trajectory of mandibular movements while opening and closing the mouth. After designing dentures on the basis of the newly established maxillomandibular relationships and performing a try-in process, the final dentures can be manufactured. This alternative technique can reduce the need for multiple visits and complex procedures, improving the workflow for fabricating prostheses with the correct maxillomandibular relationships for individual patients.


2021 ◽  
Vol 11 (13) ◽  
pp. 5786
Author(s):  
Hwa-Jung Lee ◽  
Jeongho Jeon ◽  
Hong Seok Moon ◽  
Kyung Chul Oh

This technical procedure demonstrates a 4-step completely digital workflow for the fabrication of complete dentures in edentulous patients. The digital scan data of the edentulous arches were obtained using an intraoral scanner, followed by the fabrication of modeless trial denture bases using additive manufacturing. Using the trial denture base and a wax rim assembly, the interarch relationship was recorded. This record was digitized using an intraoral scanner and reversed for each maxillary and mandibular section individually. The digital scan data directly obtained using the intraoral scanner were superimposed over the reversed data, establishing a proper interarch relationship. The artificial teeth were arranged virtually and try-in dentures were additively manufactured. Subsequently, the gingival and tooth sections were additively manufactured individually and characterized. Thus, fabrication of digital complete dentures can be accomplished using digital data characteristics. The workflow includes data acquisition using an intraoral scanner, data processing using reverse engineering and computer-aided design software programs, and additive manufacturing.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1170
Author(s):  
Giulio Marchesi ◽  
Alvise Camurri Piloni ◽  
Vanessa Nicolin ◽  
Gianluca Turco ◽  
Roberto Di Lenarda

Restorative materials are experiencing an extensive upgrade thanks to the use of chairside Computer-aided design/computer-assisted manufacturing (CAD/CAM) restorations. Therefore, due to the variety offered in the market, choosing the best material could be puzzling for the practitioner. The clinical outcome of the restoration is influenced mainly by the material and its handling than by the fabrication process (i.e., CAD/CAM). Information on the restorative materials performances can be difficult to gather and compare. The aim of this article is to provide an overview of chairside CAD/CAM materials, their classification, and clinically relevant aspects that enable the reader to select the most appropriate material for predictable success.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6584
Author(s):  
Alessandro Paoli ◽  
Paolo Neri ◽  
Armando V. Razionale ◽  
Francesco Tamburrino ◽  
Sandro Barone

3D digital models of the upper limb anatomy represent the starting point for the design process of bespoke devices, such as orthoses and prostheses, which can be modeled on the actual patient’s anatomy by using CAD (Computer Aided Design) tools. The ongoing research on optical scanning methodologies has allowed the development of technologies that allow the surface reconstruction of the upper limb anatomy through procedures characterized by minimum discomfort for the patient. However, the 3D optical scanning of upper limbs is a complex task that requires solving problematic aspects, such as the difficulty of keeping the hand in a stable position and the presence of artefacts due to involuntary movements. Scientific literature, indeed, investigated different approaches in this regard by either integrating commercial devices, to create customized sensor architectures, or by developing innovative 3D acquisition techniques. The present work is aimed at presenting an overview of the state of the art of optical technologies and sensor architectures for the surface acquisition of upper limb anatomies. The review analyzes the working principles at the basis of existing devices and proposes a categorization of the approaches based on handling, pre/post-processing effort, and potentialities in real-time scanning. An in-depth analysis of strengths and weaknesses of the approaches proposed by the research community is also provided to give valuable support in selecting the most appropriate solution for the specific application to be addressed.


2014 ◽  
Vol 980 ◽  
pp. 159-164
Author(s):  
F. Wang ◽  
R.K.F. Abdelmaguid ◽  
H.M.A. Hussein

Two-dimensional curves are represented by a list of vertices and other parameters that control the shape or curvature of the segments. In computer programming to deal with closed two-dimensional curves, it is often required to know the direction of the curve, which is reflected by the sequence of the vertex data. It can be anticlockwise or clockwise. This paper presents a robust, linear algorithm to determine the direction of a closed two-dimensional curve, by computing the total angular change of a tangent vector travelling along the curve for a complete cycle. A new, robust linear algorithm is proposed for the determination of the positional relationship of a point to a two-dimensional curve. For curves that consist of line and arc segments, which are most commonly used in engineering applications in computer aided design, the paper presents algorithms and procedures for solving the above problems.


Sign in / Sign up

Export Citation Format

Share Document