Nasser M. Alahmari
◽
Hafiz A. Adawi
◽
Mohammed M. Al, Moaleem
◽
Mashael M. A. Alqahtani
◽
Lama A. A. Alkahtani
◽
...
The aim of this study was to evaluate if adhesion technology with CAD/CAM can compensate for the reduction of occluso cervical preparation heights using different types of dental cement. The de-bonding failure types were then assessed. Here, 72 caries-free extracted human premolar teeth
were prepared to have a remaining occlusal height of two, three, and four mm. IPS e.max lithium disilicate CAD/CAM crowns were cemented with adhesive resin cement Panavia SA, self-adhesive resin cement, RelyX Unicem Aplicap, and zinc phosphate cement. The cementation techniques were based
on the manufacturer’s instructions. After thermocycling, all samples were tested for tensile bond strength via an Instron machine. One-way analysis of variance (ANOVA) with post hoc testing (P < 0.05) was performed. The means TBS for the two, three, and four-mm OCHP groups
were 2.72±0.69, 3.06±0.82, and 3.25±0.79.0 MPa; ARC, SARC, and ZPC were 3.41±0.51, 3.45±0.41, 2.08±0.35 MPa, respectively with significant differences in both. The mixed cement had failures in the resin cement groups. Failure was predominantly cohesive
in the zinc phosphate group. Resin cement had the highest SBS values versus ZPC values when both bonded to lithium disilicate crowns with different occlusal heights. The failure of the adhesive to the crown and/or to the tooth were the highest for the four types of resin cement. Around 25%
were cohesive failures with resin cement, but this was predominately adhesive in crowns in zinc phosphate regardless of the preparation heights.