Experimental Models of Hepatic Fibrosis: A Review

1990 ◽  
Vol 10 (01) ◽  
pp. 56-65 ◽  
Author(s):  
Hidekazu Tsukamoto ◽  
Masaki Matsuoka ◽  
Samuel French
2008 ◽  
Vol 12 (4) ◽  
pp. 747-757 ◽  
Author(s):  
Susanne Weber ◽  
Olav A. Gressner ◽  
Rabea Hall ◽  
Frank Grünhage ◽  
Frank Lammert

2020 ◽  
Vol 134 (19) ◽  
pp. 2581-2595
Author(s):  
Qiuhong Li ◽  
Maria B. Grant ◽  
Elaine M. Richards ◽  
Mohan K. Raizada

Abstract The angiotensin-converting enzyme 2 (ACE2) has emerged as a critical regulator of the renin–angiotensin system (RAS), which plays important roles in cardiovascular homeostasis by regulating vascular tone, fluid and electrolyte balance. ACE2 functions as a carboxymonopeptidase hydrolyzing the cleavage of a single C-terminal residue from Angiotensin-II (Ang-II), the key peptide hormone of RAS, to form Angiotensin-(1-7) (Ang-(1-7)), which binds to the G-protein–coupled Mas receptor and activates signaling pathways that counteract the pathways activated by Ang-II. ACE2 is expressed in a variety of tissues and overwhelming evidence substantiates the beneficial effects of enhancing ACE2/Ang-(1-7)/Mas axis under many pathological conditions in these tissues in experimental models. This review will provide a succinct overview on current strategies to enhance ACE2 as therapeutic agent, and discuss limitations and future challenges. ACE2 also has other functions, such as acting as a co-factor for amino acid transport and being exploited by the severe acute respiratory syndrome coronaviruses (SARS-CoVs) as cellular entry receptor, the implications of these functions in development of ACE2-based therapeutics will also be discussed.


2020 ◽  
Vol 134 (16) ◽  
pp. 2189-2201
Author(s):  
Jessica P.E. Davis ◽  
Stephen H. Caldwell

Abstract Fibrosis results from a disordered wound healing response within the liver with activated hepatic stellate cells laying down dense, collagen-rich extracellular matrix that eventually restricts liver hepatic synthetic function and causes increased sinusoidal resistance. The end result of progressive fibrosis, cirrhosis, is associated with significant morbidity and mortality as well as tremendous economic burden. Fibrosis can be conceptualized as an aberrant wound healing response analogous to a chronic ankle sprain that is driven by chronic liver injury commonly over decades. Two unique aspects of hepatic fibrosis – the chronic nature of insult required and the liver’s unique ability to regenerate – give an opportunity for pharmacologic intervention to stop or slow the pace of fibrosis in patients early in the course of their liver disease. Two potential biologic mechanisms link together hemostasis and fibrosis: focal parenchymal extinction and direct stellate cell activation by thrombin and Factor Xa. Available translational research further supports the role of thrombosis in fibrosis. In this review, we will summarize what is known about the convergence of hemostatic changes and hepatic fibrosis in chronic liver disease and present current preclinical and clinical data exploring the relationship between the two. We will also present clinical trial data that underscores the potential use of anticoagulant therapy as an antifibrotic factor in liver disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A537-A537
Author(s):  
I GUKOVSKY ◽  
C REYES ◽  
E VAQUERO ◽  
A BAYCHER ◽  
A GUKOVSKAYA ◽  
...  
Keyword(s):  

2020 ◽  
Vol 158 (6) ◽  
pp. S-1310
Author(s):  
Rebekah John ◽  
Anca D. Petrescu ◽  
Stephanie Grant ◽  
Elaina Williams ◽  
Sharon DeMorrow

1994 ◽  
Vol 27 (4) ◽  
pp. 663-675 ◽  
Author(s):  
Richard L. Goode ◽  
Shinsei Nishihara
Keyword(s):  

1986 ◽  
Vol 4 (1) ◽  
pp. 249-264 ◽  
Author(s):  
M.G. Täuber ◽  
R.A. Brooks-Fournier ◽  
M.A. Sande

Sign in / Sign up

Export Citation Format

Share Document