Rheological and Chemical Properties of Hydrated Lime and Polyphosphoric Acid–Modified Asphalts with Long-Term Aging

2011 ◽  
Vol 23 (5) ◽  
pp. 628-637 ◽  
Author(s):  
Shin-Che Huang ◽  
Francis P. Miknis ◽  
William Schuster ◽  
Stephen Salmans ◽  
Michael Farrar ◽  
...  
2015 ◽  
Vol 27 (9) ◽  
pp. 04014248 ◽  
Author(s):  
Yuhong Wang ◽  
Yong Wen ◽  
Kecheng Zhao ◽  
Dan Chong ◽  
Jianming Wei

Geoderma ◽  
2019 ◽  
Vol 344 ◽  
pp. 127-136 ◽  
Author(s):  
Laura Giagnoni ◽  
Anita Maienza ◽  
Silvia Baronti ◽  
Francesco Primo Vaccari ◽  
Lorenzo Genesio ◽  
...  

2020 ◽  
Vol 8 (2) ◽  
pp. 185-194 ◽  
Author(s):  
Ana Clara Sokolowski ◽  
Barbara Prack McCormick ◽  
Javier De Grazia ◽  
José E. Wolski ◽  
Hernán A. Rodríguez ◽  
...  

Author(s):  
Juliany Barbosa de Pinho ◽  
Aloisio Bianchini ◽  
Pedro Silvério Xavier Pereira ◽  
Letycia Cunha Nunes ◽  
Rodrigo Fernandes Daros ◽  
...  

From the pyrolysis process, biochar is a carbon rich and recalcitrant organic material with potential for long term carbon sequestration because of its aromatic structure. However, the physical and chemical properties of the biochar vary due to the diversity of raw material and the conditions of production. The present study aimed to evaluate the biochar from the sugarcane bagasse at different temperatures and under two conditions of pyrolysis. The biochar was produced at two final temperatures 200°C (1 hour); 250°C (1h) and 250°C (2h), with pyrolysis of an oxidizing and non-oxidizing atmosphere for both. PH, cation exchange capacity (CTC), carbon content (C), Nitrogen (N), hydrogen (H), H:C, C:N and ash ratios were evaluated. The contents of C, H, N and the atomic ratios H:C and C:N were higher in Biochar produced in a non-oxidizing atmosphere (BNO). However, the content of ash, pH and CTC were higher in Biochar produced in oxidizing atmospheres (BO). One can conclude the direct influence of the pyrolysis condition.


1999 ◽  
Vol 29 (3) ◽  
pp. 300-308 ◽  
Author(s):  
M. Šimek ◽  
D. W. Hopkins ◽  
J. Kalčík ◽  
T. Picek ◽  
H. Šantrůčkov& ◽  
...  

2021 ◽  
Vol 48 (1) ◽  
pp. 55-62
Author(s):  
Hussein J. Shareef ◽  
Abdulrahman S. Alhamd ◽  
Summar A. Naqvi ◽  
Mamdouh A. Eissa

Abstract The date palm can grow in desert areas using high salinity groundwater by increasing the number of irrigation cycles. A field experiment was carried out on date palm cv. Sayer offshoots grown in sandy saline soil during the 2017 and 2018 growing seasons. The outcomes demonstrated that the application of saline (10 dS m–1) groundwater every four days increased plant height, number of new leaves, total chlorophyll, and relative water content. In turn, the hydrogen peroxide, malondialdehyde, and electrolyte leakage were reduced. Also, the effect of this treatment improved the growth of the plants, thus reduced the absorption of sodium, chloride, and increased potassium, then decreased the Na/K ratio. Cluster analysis showed two distinct cluster groups. In the first group, the dissimilarity between the treatments is illustrated by the influence of freshwater. While the second group showed the similarity between the treatments of four days and every week in the subgroup. Whereas treatment of two weeks duration shows the most detrimental effect on growth indices and chemical properties of offshoots. The utilization of saline groundwater in the water system of the date palm is the best option among the solutions possible in the current conditions of drought and thermal retention.


2017 ◽  
pp. 49-52
Author(s):  
S. S. Osuchuk ◽  
O. S. Yakovleva

Object: to study the physical and chemical properties of the lipoprotein complexes of rats` blood in the long-term administration of statins and vitamin D. Material and methods. The experiment was performed on 4 experimental groups of rats for 90 days: 1 - intact; 2 - placebo; 3 - intragastric administration of atorvastatin; 4 - intragastric administration of atorvastatin with α-calcidol. The lipoprotein blood complexes were isolated by the method of differential ultracentrifugation. The microflow and microviscosity of the lipoprotein complexes were determined using pyrene. Results. The placebo group revealed an increase of the micropolarity of the total lipid pool of VLDL and a decrease of the microviscosity of the annulary pool of LDL and HDL. The administration of atorvastatin reduces the microviscosity of HDL. The combined application of atorvastatin and α-calcidol reduces the microviscosity of HDL. Conclusion. We have drawn a conclusion about the complex effect of stress, atorvastatin, and α-calcidol on the physical and chemical properties of the lipoprotein blood complexes and a conclusion about the positive effect of atorvastatin and α-calcidol on the microviscosity of HDL.


Sign in / Sign up

Export Citation Format

Share Document