relative water
Recently Published Documents


TOTAL DOCUMENTS

1093
(FIVE YEARS 406)

H-INDEX

41
(FIVE YEARS 7)

2024 ◽  
Vol 84 ◽  
Author(s):  
M. Javed ◽  
M. Iqbal ◽  
H. Bano ◽  
N. Hussain ◽  
A. Ghaffar ◽  
...  

Abstract Growth of plants is severely reduced due to water stress by affecting photosynthesis including photosystem II (PSII) activity and electron transport. This study emphasised on comparative and priority targeted changes in PSII activity due to progressive drought in seven populations of Panicum antidotale (P. antidotale) collected from Cholistan Desert and non-Cholistan regions. Tillers of equal growth of seven populations of P. antidotale grown in plastic pots filled with soil were subjected progressive drought by withholding water irrigation for three weeks. Progressive drought reduced the soil moisture content, leaf relative water content, photosynthetic pigments and fresh and dry biomass of shoots in all seven populations. Populations from Dingarh Fort, Dingarh Grassland and Haiderwali had higher growth than those of other populations. Cholistani populations especially in Dingarh Grassland and Haiderwali had greater ability of osmotic adjustment as reflected by osmotic potential and greater accumulation of total soluble proteins. Maximum H2O2 under water stress was observed in populations from Muzaffargarh and Khanewal but these were intermediate in MDA content. Under water stress, populations from Muzaffargarh and Dingarh Fort had greater K+ accumulation in their leaves. During progressive drought, non-Cholistani populations showed complete leaf rolling after 23 days of drought, and these populations could not withstand with more water stress condition while Cholistani populations tolerated more water stress condition for 31 days. Moreover, progressive drought caused PSII damages after 19 days and it became severe after 23 days in non-Cholistani populations of P. antidotale than in Cholistani populations.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 221
Author(s):  
Muhammad Asyraf Mohd Amnan ◽  
Wan Mohd Aizat ◽  
Fiqri Dizar Khaidizar ◽  
Boon Chin Tan

Drought is one of the significant threats to the agricultural sector. However, there is limited knowledge on plant response to drought stress and post-drought recovery. Pandanus amaryllifolius, a moderate drought-tolerant plant, is well-known for its ability to survive in low-level soil moisture conditions. Understanding the molecular regulation of drought stress signaling in this plant could help guide the rational design of crop plants to counter this environmental challenge. This study aimed to determine the morpho-physiological, biochemical, and protein changes of P. amaryllifolius in response to drought stress and during recovery. Drought significantly reduced the leaf relative water content and chlorophyll content of P. amaryllifolius. In contrast, relative electrolyte leakage, proline and malondialdehyde contents, and the activities of antioxidant enzymes in the drought-treated and recovered samples were relatively higher than the well-watered sample. The protein changes between drought-stressed, well-watered, and recovered plants were evaluated using tandem mass tags (TMT)-based quantitative proteomics. Of the 1415 differentially abundant proteins, 74 were significantly altered. The majority of proteins differing between them were related to carbon metabolism, photosynthesis, stress response, and antioxidant activity. This is the first study that reports the protein changes in response to drought stress in Pandanus. The data generated provide an insight into the drought-responsive mechanisms in P. amaryllifolius.


2022 ◽  
Vol 17 (12) ◽  
Author(s):  
Elizamar Ciríaco Da Silva ◽  
José Roberto Vieira Aragão ◽  
Iére Barros Bispo ◽  
Islayne da Cruz Menezes ◽  
Hugo Henrique Costa Do Nascimento

Triplaris gardneriana Wedd is a deciduous riparian tree occurring in areas with different climatic conditions in Brazil, from the rainforest to the tropical dry forest. An increase in global temperature and drought events can change the growth pattern and establishment of the species. To evaluate the effects of intermittent drought on the growth of T. gardneriana seedlings, an experiment was performed using seedlings with one month old subjected to three water treatments (daily irrigation as control, and intermittent drought through cycles of water suppression of seven (S7) and 14 days-intervals (S14) between watering. Growth, biomass production and partitioning, relative water content (RWC), the accumulation of organic solutes, protoplasmic integrity and phenotypic plasticity index (PPI) were evaluated for a better understanding about its drought tolerance level. Intermittent drought severely affected plants growth in S14 plants, showing lower plant height, number of leaves, leaf area, and dry biomass. RWC was reduced, while carbohydrates and proline contents increased in response to drought stress. Protoplasmic damage increased electrolyte leakage in plants subjected to severe stress. However, T. garderiana demonstrated moderate tolerance to water deficit. The plastic changes observed were more physiological than morphological.  Therefore, T. gardneriana seems to be a moderately tolerant species to intermittent drought.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Khadeja Sultana Sathi ◽  
Abdul Awal Chowdhury Masud ◽  
Maliha Rahman Falguni ◽  
Naznin Ahmed ◽  
Khussboo Rahman ◽  
...  

Waterlogging is a common form of abiotic stress that severely impedes global soybean production. Targeting this issue, an experiment was carried out at Sher-e-Bangla Agricultural University during August–November 2019 to screen out the waterlogging tolerance and yield performances of selected soybean genotypes. The experiment was laid out in a completely randomized design (CRD) with three replications consisting of 2 water levels (control and waterlogging) and 12 genotypes (Sohag, BARI Soybean-5, BINAsoybean-1, BINAsoybean-2, BINAsoybean-3, BINAsoybean-5, BINAsoybean-6, SGB-1, SGB-3, SGB-4, SGB-5, and GC-840). On the 15th day after sowing, plants were exposed to waterlogging for 12 days. Waterlogging remarkably declined the growth and yield of all the soybean genotypes compared to control. Reduced plant height, relative water content, above-ground fresh and dry weight, SPAD value, leaf area, number of leaves, branches, pods, seeds pod−1, 100-seed weight, and seed yield plant−1 were observed under waterlogging stress. Conversely, mortality rate and electrolyte leakage were increased under the same condition. The waterlogged plants showed delayed flowering and maturity compared with the control plants. However, among the 12 genotypes, Sohag, BARI Soybean-5, GC-840, BINAsoybean-1, and BINAsoybean-2 showed better waterlogging tolerance. These genotypes showed a greater number of adventitious roots in the base of their stem, which probably helped plants to thrive under waterlogging conditions.


2022 ◽  
Vol 14 (2) ◽  
pp. 723
Author(s):  
Abdel Wahab M. Mahmoud ◽  
Mahmoud M. Samy ◽  
Hoda Sany ◽  
Rasha R. Eid ◽  
Hassan M. Rashad ◽  
...  

Salinity is one of the main environmental stresses, and it affects potato growth and productivity in arid and semiarid regions by disturbing physiological process, such as the photosynthesis rate, the absorption of essential nutrients and water, plant hormonal functions, and vital metabolic pathways. Few studies are available on the application of combined nanomaterials to mitigate salinity stress on potato plants (Solanum tuberosum L. cv. Diamont). In order to assess the effects of the sole or combined application of silicon (Si) and potassium (K) nanoparticles and biochar (Bc) on the agro-physiological properties and biochemical constituents of potato plants grown in saline soil, two open-field experiments were executed on a randomized complete block design (RCBD), with five replicates. The results show that the biochar application and nanoelements (n-K and n-Si) significantly improved the plant heights, the fresh and dry plant biomasses, the numbers of stems/plant, the leaf relative water content, the leaf chlorophyll content, the photosynthetic rate (Pn), the leaf stomatal conductance (Gc), and the tuber yields, compared to the untreated potato plants (CT). Moreover, the nanoelements and biochar improved the content of the endogenous elements of the plant tissues (N, P, K, Mg, Fe, Mn, and B), the leaf proline, and the leaf gibberellic acid (GA3), in addition to reducing the leaf abscisic acid content (ABA), the activity of catalase (CAT), and the peroxidase (POD) and polyphenol oxidase (PPO) in the leaves of salt-stressed potato plants. The combined treatment achieved maximum plant growth parameters, physiological parameters, and nutrient concentrations, and minimum transpiration rates (Tr), leaf abscisic acid content (ABA), and activities of the leaf antioxidant enzymes (CAT, POD, and PPO). Furthermore, the combined treatment also showed the highest tuber yield and tuber quality, including the contents of carbohydrates, proteins, and the endogenous nutrients of the tuber tissues (N, P, and K), and the lowest starch content. Moreover, Pearson’s correlation showed that the plant growth and the tuber yields of potato plants significantly and positively correlated with the photosynthesis rate, the internal CO2 concentration, the relative water content, the proline, the chlorophyll content, and the GA3, and that they were negatively correlated with the leaf Na content, PPO, CAT, ABA, MDA, and Tr. It might be concluded that nanoelement (n-K and n-Si) and biochar applications are a promising method to enhance the plant growth and crop productivity of potato plants grown under salinity conditions.


2022 ◽  
Author(s):  
Ajay K Singh ◽  
Susheel Kumar Raina ◽  
Mahesh Kumar ◽  
Lalitkumar Aher ◽  
Milind B Ratnaparkhe ◽  
...  

Abstract Fatty acid desaturases (FADs) are a class of enzymes that mediate desaturation of fatty acids by introducing double bonds. They play an important role in modulating membrane fluidity in response to various abiotic stresses. However, a comprehensive analysis of FAD3 in drought and salinity stress tolerance in soybean is lacking. We used Bean Pod Mottle Virus (BPMV)-based vector for achieving rapid and efficient overexpression as well as silencing of Omega-3 Fatty Acid Desaturase gene from Glycine max (GmFAD3) to assess the functional role of FAD3 in abiotic stress responses in soybean. Higher levels of recombinant BPMV-GmFAD3A transcripts were detected in overexpressing soybean plants. Overexpression of GmFAD3A in soybean resulted in increased levels of jasmonic acid and higher expression of GmWRKY54 as compared to mock-inoculated, vector-infected and FAD3-silenced soybean plants under drought and salinity stress conditions. FAD3A overexpressing plants showed higher levels of chlorophyll content, efficient photosystem-II, relative water content, transpiration rate, stomatal conductance, proline content and also cooler canopy under drought and salinity stress conditions as compared to mock-inoculated, vector-infected and FAD3-silenced soybean plants. Results from the current study revealed that GmFAD3A overexpressing soybean plants exhibited tolerance to drought and salinity stresses. However, soybean plants silenced for GmFAD3 were vulnerable to drought and salinity stresses.


2022 ◽  
Vol 44 (1) ◽  
Author(s):  
Mohamed Ahmed Fayek ◽  
Ahmed Abdelhady Rashedy ◽  
Amr Ebrahim Mohamed Ali

Abstract Using interstock with a potential genetic base is considered more recent and sustainable strategy for mitigating the water deficit. This investigation was carried out on transplant of Flame seedless (Vitis vinifera) grapevine grafted onto two rootstocks namely; Freedom (Vitis champinii x 1613C) and 1103Paulsen (vitis berlandieri x Vitis rupestris) with or without 1103Paulsen as interstock to determine its performance under deficit irrigation condition (50% of field capacity). The results indicated that Paulsen as rootstock or as interstock significantly increased the growth vigor of Flame seedless scion as well as the leaf content of total proline, phenols and sugars. Paulsen rootstock has decreased stomatal conductance, leaf transpiration rate and increased diffusion resistance under 50% deficit irrigation compared with grafting on Freedom rootstock. Moreover, Paulsen as interstock for Flame seedless grafted onto Freedom rootstock significantly increased relative water content accompanied by an increase in thickness of leaf anatomical characters such as midvein, lamina, palisade, xylem and phloem tissue under deficit irrigation compared with grafts without Paulsen interstock. This study suggests that using Paulsen as interstock, can be an adaptation strategy for water stress through controlling in some morphological, chemical physiological and anatomical responses of scion.


2022 ◽  
Vol 7 (1) ◽  
pp. 37-60
Author(s):  
Yenni ◽  
◽  
Mohd Hafiz Ibrahim ◽  
Rosimah Nulit ◽  
Siti Zaharah Sakimin ◽  
...  

<abstract> <p>Drought stress is one of the challenges that can affect the growth and the quality of strawberry. The study aims to determine the growth, biochemical changes and leaf gas exchange of three strawberry cultivars under drought stress. This study was conducted in a glasshouse at Indonesian Citrus and Subtropical Fruits Research Institute, Indonesia, from July-November 2018. The experiment was arranged in a factorial randomized completely block design (RCBD) with three replications and four water deficit (WD) levels [100% field capacity (FC)/well-watered), 75% of FC (mild WD), 50% of FC (moderate WD), and 25% of FC (severe WD)] for three strawberry cultivars (Earlibrite, California and Sweet Charlie). The results showed that total chlorophyll and anthocyanin contents (p ≤ 0.05) were influenced by the interaction effects of cultivars and water deficit. Whereas other parameters such as plant growth, transpiration rate (<italic>E</italic>), net photosynthesis (<italic>A</italic>), stomatal conductance (<italic>gs</italic>), leaf relative water content (LRWC), flowers and fruits numbers, proline content, length, diameter, weight and total soluble solid (TSS) of fruit were affected by water deficit. <italic>A</italic> had positive significant correlation with plant height (r = 0.808), leaf area (r = 0.777), fruit length (r = 0.906), fruit diameter (r = 0.889) and fruit weight (r = 0.891). Based on the results, cultivars affected LRWC, and also number of flowers and fruits of the strawberry. This study showed that water deficit decreased plant growth, chlorophyll content, leaf gas exchange, leaf relative water content, length, diameter and weight of fruit but enhanced TSS, anthocyanin, MDA, and proline contents. Increased anthocyanin and proline contents are mechanisms for protecting plants against the effects of water stress. California strawberry had the highest numbers of flowers and fruits, and also anthocyanin content. Hence, this cultivar is recommended to be planted under drought stress conditions. Among all water stress treatments, 75% of FC had the best results to optimize water utilization on the strawberry plants.</p> </abstract>


2021 ◽  
Vol 74 ◽  
Author(s):  
Piyaporn Phansak ◽  
Supatcharee Siriwong ◽  
Nantawan Kanawapee ◽  
Kanjana Thumanu ◽  
Wuttichai Gunnula ◽  
...  

Abstract Drought isa major constraint in many rainfed areas and affects rice yield. We aimed to characterize the physiological changes in rice in response to drought using Fourier transform infrared (FTIR) spectroscopy. Eighty rice landrace seedlings were subjected to drought in the greenhouse using a PEG 6000. Physiological parameters, including total chlorophyll content, relative water content, electrolyte leakage, and biochemical changes were evaluated. Based on the FTIR results, the landraces were divided into three main groups: tolerant, moderately tolerant, and susceptible. Principal component analysis revealed spectral differences between the control and drought stress treatment groups. Lipid, pectin, and lignin content increased after drought stress. The biochemical components of plants at different drought tolerance levels were also compared. The lipid (CH2 and CH3), lignin (C=C), pectin (C=O), and protein (C=O, N–H) contents were the highest in the drought-tolerant cultivars, followed by the moderately tolerant and susceptible cultivars, respectively. Cultivar 17 and 49 were the most tolerant, and the functional groups were identified and characterized using FTIR. Overall, these results will be useful in selecting parental cultivars for rice breeding programs.


Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 35
Author(s):  
Rūta Sutulienė ◽  
Lina Ragelienė ◽  
Giedrė Samuolienė ◽  
Aušra Brazaitytė ◽  
Martynas Urbutis ◽  
...  

Abiotic stress caused by drought impairs plant growth and reduces yields. This study aimed to investigate the impact of silica nanoparticles (SiO2 NPs) through the adverse effects of drought on the growth, oxidative stress, and antioxidative response of pea ‘Respect’. Pea plants were grown in a greenhouse before being watered (100 ± 1 mL per pot) or foliar sprayed (ca. 14 ± 0.5 mL plant−1) with suspensions containing SiO2 NPs (0, 12.5 ppm, 25 ppm, and 50 ppm) and were exposed to drought stress for 10 days. Drought stress was created by maintaining 30% of the soil moisture while the control was 80%. The growth parameters of pea grown under drought stress conditions were improved by spraying or watering plants with SiO2 NPs (12.5, 25, and 50 ppm). At drought stress, peas treated with SiO2 NPs (50 ppm) increased their relative water content by 29%, specific leaf area by 17%, and decreased root/shoot ratio by 4% as compared to plant non-treated with SiO2 NPs. In addition, spraying or watering of SiO2 NPs increased peas tolerance to drought by increasing the activity of antioxidant enzymes at least three times including catalase, ascorbate peroxidase, glutathione reductase, and superoxide dismutase, as well as reducing hydrogen peroxide and lipid peroxidation in plant tissue. It was observed the increase in total phenolic compounds and non-enzymatic antioxidant activity (DPPH, ABTS, FRAP) in peas treated with SiO2 NPs under drought stress. The physiological response of peas to drought and the effects of SiO2 NPs studied in this experiment based on the use of the concentration of 50 ppm nanoparticles can protect peas from the damaging effects of drought and could help reduce global food shortages.


Sign in / Sign up

Export Citation Format

Share Document