Short-Term Real-Time Reservoir Operation for Irrigation

2013 ◽  
Vol 139 (2) ◽  
pp. 149-158 ◽  
Author(s):  
A. Srinivasa Prasad ◽  
N. V. Umamahesh ◽  
G. K. Viswanath
2020 ◽  
Vol 34 (10) ◽  
pp. 13849-13850
Author(s):  
Donghyeon Lee ◽  
Man-Je Kim ◽  
Chang Wook Ahn

In a real-time strategy (RTS) game, StarCraft II, players need to know the consequences before making a decision in combat. We propose a combat outcome predictor which utilizes terrain information as well as squad information. For training the model, we generated a StarCraft II combat dataset by simulating diverse and large-scale combat situations. The overall accuracy of our model was 89.7%. Our predictor can be integrated into the artificial intelligence agent for RTS games as a short-term decision-making module.


2021 ◽  
Vol 595 ◽  
pp. 126017
Author(s):  
Jiabiao Wang ◽  
Tongtiegang Zhao ◽  
Jianshi Zhao ◽  
Hao Wang ◽  
Xiaohui Lei

2020 ◽  
pp. 1-19
Author(s):  
Fernando Cantú-Bazaldúa

World economic aggregates are compiled infrequently and released after considerable lags. There are, however, many potentially relevant series released in a timely manner and at a higher frequency that could provide significant information about the evolution of global aggregates. The challenge is then to extract the relevant information from this multitude of indicators and combine it to track the real-time evolution of the target variables. We develop a methodology based on dynamic factor models adapted for variables with heterogeneous frequencies, ragged ends and missing data. We apply this methodology to nowcast global trade in goods in goods and services. In addition to monitoring these variables in real time, this method can also be used to obtain short-term forecasts based on the most up-to-date values of the underlying indicators.


2011 ◽  
Vol 94-96 ◽  
pp. 38-42
Author(s):  
Qin Liu ◽  
Jian Min Xu

In order to improve the prediction precision of the short-term traffic flow, a prediction method of short-term traffic flow based on cloud model was proposed. The traffic flow was fit by cloud model. The history cloud and the present cloud were built by historical traffic flow and present traffic flow. The forecast cloud is produced by both clouds. Then, combining with the volume of the short-term traffic flow of an intersection in Guangzhou City, the model was calculated and simulated through programming. Max Absolute Error (MAE) and Mean Absolute percent Error (MAPE) were used to estimate the effect of prediction. The simulation results indicate that this prediction method is effective and advanced. The change of the historical and real time traffic flow is taken into account in this method. Because the short-term traffic flow is dealt with as a whole, the error of prediction is avoided. The prediction precision and real-time prediction are satisfied.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Sylwia Ciesiółka ◽  
Joanna Budna ◽  
Karol Jopek ◽  
Artur Bryja ◽  
Wiesława Kranc ◽  
...  

The key mechanisms responsible for achievement of full reproductive and developmental capability in mammals are the differentiation and transformation of granulosa cells (GCs) during folliculogenesis, oogenesis, and oocyte maturation. Although the role of 17 beta-estradiol (E2) in ovarian activity is widely known, its effect on proliferative capacity, gap junction connection (GJC) formation, and GCs-luteal cells transformation requires further research. Therefore, the goal of this study was to assess the real-time proliferative activity of porcine GCs in vitro in relation to connexin (Cx), luteinizing hormone receptor (LHR), follicle stimulating hormone receptor (FSHR), and aromatase (CYP19A1) expression during short-term (168 h) primary culture. The cultured GCs were exposed to acute (at 96 h of culture) and/or prolonged (between 0 and 168 h of culture) administration of 1.8 and 3.6 μM E2. The relative abundance of Cx36, Cx37, Cx40, Cx43, LHR, FSHR, and CYP19A1 mRNA was measured. We conclude that the proliferation capability of GCs in vitro is substantially associated with expression of Cxs, LHR, FSHR, and CYP19A1. Furthermore, the GC-luteal cell transformation in vitro may be significantly accompanied by the proliferative activity of GCs in pigs.


2021 ◽  
Author(s):  
Gaurav Modi ◽  
Manu Ujjwal ◽  
Srungeer Simha

Abstract Short Term Injection Re-distribution (STIR) is a python based real-time WaterFlood optimization technique for brownfield assets that uses advanced data analytics. The objective of this technique is to generate recommendations for injection water re-distribution to maximize oil production at the facility level. Even though this is a data driven technique, it is tightly bounded by Petroleum Engineering principles such as material balance etc. The workflow integrates and analyse short term data (last 3-6 months) at reservoir, wells and facility level. STIR workflow is divided into three modules: Injector-producer connectivity Injector efficiency Injection water optimization First module uses four major data types to estimate the connectivity between each injector-producer pair in the reservoir: Producers data (pressure, WC, GOR, salinity) Faults presence Subsurface distance Perforation similarity – layers and kh Second module uses connectivity and watercut data to establish the injector efficiency. Higher efficiency injectors contribute most to production while poor efficiency injectors contribute to water recycling. Third module has a mathematical optimizer to maximize the oil production by re-distributing the injection water amongst injectors while honoring the constraints at each node (well, facility etc.) of the production system. The STIR workflow has been applied to 6 reservoirs across different assets and an annual increase of 3-7% in oil production is predicted. Each recommendation is verified using an independent source of data and hence, the generated recommendations align very well with the reservoir understanding. The benefits of this technique can be seen in 3-6 months of implementation in terms of increased oil production and better support (pressure increase) to low watercut producers. The inherent flexibility in the workflow allows for easy replication in any Waterflooded Reservoir and works best when the injector well count in the reservoir is relatively high. Geological features are well represented in the workflow which is one of the unique functionalities of this technique. This method also generates producers bean-up and injector stimulation candidates opportunities. This low cost (no CAPEX) technique offers the advantages of conventional petroleum engineering techniques and Data driven approach. This technique provides a great alternative for WaterFlood management in brownfield where performing a reliable conventional analysis is challenging or at times impossible. STIR can be implemented in a reservoir from scratch in 3-6 weeks timeframe.


Sign in / Sign up

Export Citation Format

Share Document